Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Bradbury, Charlotte A. M. D. PhD, Lawler, Patrick R. M. D. M. P. H.; Stanworth, Simon J. M. D.; McVerry, Bryan J. M. D.; McQuilten, Zoe PhD, Higgins, Alisa M. PhD, Mouncey, Paul R. MSc, Al-Beidh, Farah PhD, Rowan, Kathryn M. PhD, Berry, Lindsay R. PhD, Lorenzi, Elizabeth PhD, Zarychanski, Ryan M. D. MSc, Arabi, Yaseen M. M. D.; Annane, Djillali M. D. PhD, Beane, Abi PhD, van Bentum-Puijk, Wilma MSc, Bhimani, Zahra M. P. H.; Bihari, Shailesh PhD, M Bonten, Marc J. M. D. PhD, Brunkhorst, Frank M. M. D. PhD, Buzgau, Adrian MSc, Buxton, Meredith PhD, Carrier, Marc M. D. MSc, Cheng, Allen C. Mbbs PhD, Cove, Matthew Mbbs, Detry, Michelle A. PhD, Estcourt, Lise J. MBBCh PhD, Fitzgerald, Mark PhD, Girard, Timothy D. M. D. Msci, Goligher, Ewan C. M. D. PhD, Goossens, Herman PhD, Haniffa, Rashan PhD, Hills, Thomas Mbbs PhD, Huang, David T. M. D. M. P. H.; Horvat, Christopher M. M. D.; Hunt, Beverley J. M. D. PhD, Ichihara, Nao M. D. M. P. H. PhD, Lamontagne, Francois M. D.; Leavis, Helen L. M. D. PhD, Linstrum, Kelsey M. M. S.; Litton, Edward M. D. PhD, Marshall, John C. M. D.; McAuley, Daniel F. M. D.; McGlothlin, Anna PhD, McGuinness, Shay P. M. D.; Middeldorp, Saskia M. D. PhD, Montgomery, Stephanie K. MSc, Morpeth, Susan C. M. D. PhD, Murthy, Srinivas M. D.; Neal, Matthew D. M. D.; Nichol, Alistair D. M. D. PhD, Parke, Rachael L. PhD, Parker, Jane C. B. N.; Reyes, Luis F. M. D. PhD, Saito, Hiroki M. D. M. P. H.; Santos, Marlene S. M. D. Mshs, Saunders, Christina T. PhD, Serpa-Neto, Ary PhD MSc M. D.; Seymour, Christopher W. M. D. MSc, Shankar-Hari, Manu M. D. PhD, Singh, Vanessa, Tolppa, Timo Mbbs, Turgeon, Alexis F. M. D. MSc, Turner, Anne M. M. P. H.; van de Veerdonk, Frank L. M. D. PhD, Green, Cameron MSc, Lewis, Roger J. M. D. PhD, Angus, Derek C. M. D. M. P. H.; McArthur, Colin J. M. D.; Berry, Scott PhD, G Derde, Lennie P. M. D. PhD, Webb, Steve A. M. D. PhD, Gordon, Anthony C. Mbbs M. D..
JAMA ; 327(13):1247, 2022.
Article in English | ProQuest Central | ID: covidwho-1801957

ABSTRACT

Importance The efficacy of antiplatelet therapy in critically ill patients with COVID-19 is uncertain. Objective To determine whether antiplatelet therapy improves outcomes for critically ill adults with COVID-19. Design, Setting, and Participants In an ongoing adaptive platform trial (REMAP-CAP) testing multiple interventions within multiple therapeutic domains, 1557 critically ill adult patients with COVID-19 were enrolled between October 30, 2020, and June 23, 2021, from 105 sites in 8 countries and followed up for 90 days (final follow-up date: July 26, 2021). Interventions Patients were randomized to receive either open-label aspirin (n = 565), a P2Y12 inhibitor (n = 455), or no antiplatelet therapy (control;n = 529). Interventions were continued in the hospital for a maximum of 14 days and were in addition to anticoagulation thromboprophylaxis. Main Outcomes and Measures The primary end point was organ support–free days (days alive and free of intensive care unit–based respiratory or cardiovascular organ support) within 21 days, ranging from −1 for any death in hospital (censored at 90 days) to 22 for survivors with no organ support. There were 13 secondary outcomes, including survival to discharge and major bleeding to 14 days. The primary analysis was a bayesian cumulative logistic model. An odds ratio (OR) greater than 1 represented improved survival, more organ support–free days, or both. Efficacy was defined as greater than 99% posterior probability of an OR greater than 1. Futility was defined as greater than 95% posterior probability of an OR less than 1.2 vs control. Intervention equivalence was defined as greater than 90% probability that the OR (compared with each other) was between 1/1.2 and 1.2 for 2 noncontrol interventions. Results The aspirin and P2Y12 inhibitor groups met the predefined criteria for equivalence at an adaptive analysis and were statistically pooled for further analysis. Enrollment was discontinued after the prespecified criterion for futility was met for the pooled antiplatelet group compared with control. Among the 1557 critically ill patients randomized, 8 patients withdrew consent and 1549 completed the trial (median age, 57 years;521 [33.6%] female). The median for organ support–free days was 7 (IQR, −1 to 16) in both the antiplatelet and control groups (median-adjusted OR, 1.02 [95% credible interval {CrI}, 0.86-1.23];95.7% posterior probability of futility). The proportions of patients surviving to hospital discharge were 71.5% (723/1011) and 67.9% (354/521) in the antiplatelet and control groups, respectively (median-adjusted OR, 1.27 [95% CrI, 0.99-1.62];adjusted absolute difference, 5% [95% CrI, −0.2% to 9.5%];97% posterior probability of efficacy). Among survivors, the median for organ support–free days was 14 in both groups. Major bleeding occurred in 2.1% and 0.4% of patients in the antiplatelet and control groups (adjusted OR, 2.97 [95% CrI, 1.23-8.28];adjusted absolute risk increase, 0.8% [95% CrI, 0.1%-2.7%];99.4% probability of harm). Conclusions and Relevance Among critically ill patients with COVID-19, treatment with an antiplatelet agent, compared with no antiplatelet agent, had a low likelihood of providing improvement in the number of organ support–free days within 21 days.

2.
Am J Respir Crit Care Med ; 2022 Mar 29.
Article in English | MEDLINE | ID: covidwho-1765220

ABSTRACT

RATIONALE: Lymphopenia is common in severe COVID-19 disease, yet the immune mechanisms are poorly understood. As inflammatory cytokines are increased in severe SARS-CoV-2 infection, we hypothesized a role in contributing to reduced T-cell numbers. OBJECTIVES: We sought to characterize the functional SARS-CoV-2 T-cell responses in severe versus recovered, mild COVID-19 patients to determine whether differences were detectable. METHODS: Using flow cytometry and single cell RNA sequence analyses we assessed SARS-CoV-2-specific responses in our cohort. MEASUREMENTS/MAIN RESULTS: In 148 patients with severe COVID-19, we found lymphopenia was associated with worse survival. CD4+ lymphopenia predominated, with lower CD4+/CD8+ ratios in severe COVID-19 compared to patients with mild disease (p<0.0001). In severe disease, immunodominant CD4+ T-cell responses to Spike-1(S1) produced increased in vitro TNF-α, but demonstrated impaired S1-specific proliferation and increased susceptibility to activation-induced cell-death(AICD) following antigen exposure. CD4+TNF-α+ T-cell responses inversely correlated with absolute CD4+ counts from severe COVID-19 patients (n=76; R=-0.797, P<0.0001). In vitro TNF-α blockade including infliximab or anti-TNFRI antibodies strikingly rescued S1-specific CD4+ T-cell proliferation and abrogated S1-specific AICD in PBMC from severe COVID-19 patients (P<0.001). Single-cell RNAseq demonstrated marked downregulation of Type-1 cytokines and NFkB signaling in S1-stimulated CD4+ cells with infliximab treatment. We also evaluated bronchoalveolar lavage (BAL) and lung explant CD4+ T-cells recovered from severe COVID-19 patients and observed that lung T-cells produced higher TNF-α compared to PBMC. CONCLUSIONS: Together, our findings show CD4+ dysfunction in severe COVID-19 is TNF-α/TNFRI-dependent through immune mechanisms that may contribute to lymphopenia. TNF-α blockade may be beneficial in severe COVID-19. This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/).

3.
JAMA ; 327(13): 1247-1259, 2022 Apr 05.
Article in English | MEDLINE | ID: covidwho-1750260

ABSTRACT

Importance: The efficacy of antiplatelet therapy in critically ill patients with COVID-19 is uncertain. Objective: To determine whether antiplatelet therapy improves outcomes for critically ill adults with COVID-19. Design, Setting, and Participants: In an ongoing adaptive platform trial (REMAP-CAP) testing multiple interventions within multiple therapeutic domains, 1557 critically ill adult patients with COVID-19 were enrolled between October 30, 2020, and June 23, 2021, from 105 sites in 8 countries and followed up for 90 days (final follow-up date: July 26, 2021). Interventions: Patients were randomized to receive either open-label aspirin (n = 565), a P2Y12 inhibitor (n = 455), or no antiplatelet therapy (control; n = 529). Interventions were continued in the hospital for a maximum of 14 days and were in addition to anticoagulation thromboprophylaxis. Main Outcomes and Measures: The primary end point was organ support-free days (days alive and free of intensive care unit-based respiratory or cardiovascular organ support) within 21 days, ranging from -1 for any death in hospital (censored at 90 days) to 22 for survivors with no organ support. There were 13 secondary outcomes, including survival to discharge and major bleeding to 14 days. The primary analysis was a bayesian cumulative logistic model. An odds ratio (OR) greater than 1 represented improved survival, more organ support-free days, or both. Efficacy was defined as greater than 99% posterior probability of an OR greater than 1. Futility was defined as greater than 95% posterior probability of an OR less than 1.2 vs control. Intervention equivalence was defined as greater than 90% probability that the OR (compared with each other) was between 1/1.2 and 1.2 for 2 noncontrol interventions. Results: The aspirin and P2Y12 inhibitor groups met the predefined criteria for equivalence at an adaptive analysis and were statistically pooled for further analysis. Enrollment was discontinued after the prespecified criterion for futility was met for the pooled antiplatelet group compared with control. Among the 1557 critically ill patients randomized, 8 patients withdrew consent and 1549 completed the trial (median age, 57 years; 521 [33.6%] female). The median for organ support-free days was 7 (IQR, -1 to 16) in both the antiplatelet and control groups (median-adjusted OR, 1.02 [95% credible interval {CrI}, 0.86-1.23]; 95.7% posterior probability of futility). The proportions of patients surviving to hospital discharge were 71.5% (723/1011) and 67.9% (354/521) in the antiplatelet and control groups, respectively (median-adjusted OR, 1.27 [95% CrI, 0.99-1.62]; adjusted absolute difference, 5% [95% CrI, -0.2% to 9.5%]; 97% posterior probability of efficacy). Among survivors, the median for organ support-free days was 14 in both groups. Major bleeding occurred in 2.1% and 0.4% of patients in the antiplatelet and control groups (adjusted OR, 2.97 [95% CrI, 1.23-8.28]; adjusted absolute risk increase, 0.8% [95% CrI, 0.1%-2.7%]; 99.4% probability of harm). Conclusions and Relevance: Among critically ill patients with COVID-19, treatment with an antiplatelet agent, compared with no antiplatelet agent, had a low likelihood of providing improvement in the number of organ support-free days within 21 days. Trial Registration: ClinicalTrials.gov Identifier: NCT02735707.


Subject(s)
COVID-19 , Venous Thromboembolism , Adult , Anticoagulants/therapeutic use , Aspirin/adverse effects , Bayes Theorem , Critical Illness/therapy , Female , Hemorrhage/chemically induced , Humans , Middle Aged , Platelet Aggregation Inhibitors/adverse effects , Respiration, Artificial , Venous Thromboembolism/drug therapy
4.
J Infect Dis ; 2022 Mar 10.
Article in English | MEDLINE | ID: covidwho-1735586

ABSTRACT

BACKGROUND: Excessive complement activation has been implicated in the pathogenesis of COVID-19, but the mechanisms leading to this response remain unclear. METHODS: We measured plasma levels of key complement markers, SARS-CoV-2 RNA and antibodies against SARS-CoV-2 and common cold coronaviruses (CCC) in hospitalized patients with COVID-19 of moderate (n=18) and critical severity (n=37), and healthy control subjects (n=10). RESULTS: We confirmed that complement activation is systemically increased in COVID-19 patients and is associated with a worse disease outcome. We showed that plasma levels of C1q and circulating immune complexes (CIC) were markedly increased in severe COVID-19 patients and correlated with higher IgG titers, greater complement activation and higher disease severity score. Additional analyses showed that the classical pathway was the main arm responsible for augmented complement activation in severe patients. In addition, we demonstrated that a rapid IgG response to SARS-CoV-2 and an anamnestic IgG response to the nucleoprotein of the CCC were strongly correlated with CIC levels, complement activation, and disease severity. CONCLUSIONS: These findings indicate that early, non-neutralizing IgG responses may play a key role in complement overactivation in severe COVID-19. Our work underscores the urgent need to develop therapeutic strategies to modify complement overactivation in COVID-19 patients.

5.
JAMA ; 327(3): 227-236, 2022 01 18.
Article in English | MEDLINE | ID: covidwho-1669289

ABSTRACT

Importance: Platelets represent a potential therapeutic target for improved clinical outcomes in patients with COVID-19. Objective: To evaluate the benefits and risks of adding a P2Y12 inhibitor to anticoagulant therapy among non-critically ill patients hospitalized for COVID-19. Design, Setting, and Participants: An open-label, bayesian, adaptive randomized clinical trial including 562 non-critically ill patients hospitalized for COVID-19 was conducted between February 2021 and June 2021 at 60 hospitals in Brazil, Italy, Spain, and the US. The date of final 90-day follow-up was September 15, 2021. Interventions: Patients were randomized to a therapeutic dose of heparin plus a P2Y12 inhibitor (n = 293) or a therapeutic dose of heparin only (usual care) (n = 269) in a 1:1 ratio for 14 days or until hospital discharge, whichever was sooner. Ticagrelor was the preferred P2Y12 inhibitor. Main Outcomes and Measures: The composite primary outcome was organ support-free days evaluated on an ordinal scale that combined in-hospital death (assigned a value of -1) and, for those who survived to hospital discharge, the number of days free of respiratory or cardiovascular organ support up to day 21 of the index hospitalization (range, -1 to 21 days; higher scores indicate less organ support and better outcomes). The primary safety outcome was major bleeding by 28 days as defined by the International Society on Thrombosis and Hemostasis. Results: Enrollment of non-critically ill patients was discontinued when the prespecified criterion for futility was met. All 562 patients who were randomized (mean age, 52.7 [SD, 13.5] years; 41.5% women) completed the trial and 87% received a therapeutic dose of heparin by the end of study day 1. In the P2Y12 inhibitor group, ticagrelor was used in 63% of patients and clopidogrel in 37%. The median number of organ support-free days was 21 days (IQR, 20-21 days) among patients in the P2Y12 inhibitor group and was 21 days (IQR, 21-21 days) in the usual care group (adjusted odds ratio, 0.83 [95% credible interval, 0.55-1.25]; posterior probability of futility [defined as an odds ratio <1.2], 96%). Major bleeding occurred in 6 patients (2.0%) in the P2Y12 inhibitor group and in 2 patients (0.7%) in the usual care group (adjusted odds ratio, 3.31 [95% CI, 0.64-17.2]; P = .15). Conclusions and Relevance: Among non-critically ill patients hospitalized for COVID-19, the use of a P2Y12 inhibitor in addition to a therapeutic dose of heparin, compared with a therapeutic dose of heparin only, did not result in an increased odds of improvement in organ support-free days within 21 days during hospitalization. Trial Registration: ClinicalTrials.gov Identifier: NCT04505774.


Subject(s)
Anticoagulants/administration & dosage , COVID-19/drug therapy , Heparin/administration & dosage , Inpatients , Purinergic P2Y Receptor Antagonists/administration & dosage , Aged , Aged, 80 and over , Anticoagulants/adverse effects , COVID-19/blood , COVID-19/mortality , Clopidogrel/administration & dosage , Clopidogrel/adverse effects , Comorbidity , Extracorporeal Membrane Oxygenation/statistics & numerical data , Female , Hemorrhage/chemically induced , Heparin/adverse effects , Hospital Mortality , Humans , Male , Medical Futility , Middle Aged , Outcome Assessment, Health Care , Oxygen Inhalation Therapy/statistics & numerical data , Platelet Activation/drug effects , Platelet Aggregation Inhibitors/administration & dosage , Platelet Aggregation Inhibitors/adverse effects , Purinergic P2Y Receptor Antagonists/adverse effects , Receptors, Purinergic P2Y12 , Respiration, Artificial/statistics & numerical data , Thrombosis/epidemiology , Ticagrelor/administration & dosage , Ticagrelor/adverse effects , Time Factors , Treatment Outcome
6.
Learning Health Systems ; : 1, 2022.
Article in English | Academic Search Complete | ID: covidwho-1653311

ABSTRACT

Introduction Methods Results Conclusions Rapid, continuous implementation of credible scientific findings and regulatory approvals is often slow in large, diverse health systems. The coronavirus disease 2019 (COVID‐19) pandemic created a new threat to this common “slow to learn and adapt” model in healthcare. We describe how the University of Pittsburgh Medical Center (UPMC) committed to a rapid learning health system (LHS) model to respond to the COVID‐19 pandemic.A treatment cohort study was conducted among 11 429 hospitalized patients (pediatric/adult) from 22 hospitals (PA, NY) with a primary diagnosis of COVID‐19 infection (March 19, 2020 ‐ June 6, 2021). Sociodemographic and clinical data were captured from UPMC electronic medical record (EMR) systems. Patients were grouped into four time‐defined patient “waves” based on nadir of daily hospital admissions, with wave 3 (September 20, 2020 ‐ March 10, 2021) split at its zenith due to high volume with steep acceleration and deceleration. Outcomes included changes in clinical practice (eg, use of corticosteroids, antivirals, and other therapies) in relation to timing of internal system analyses, scientific publications, and regulatory approvals, along with 30‐day rate of mortality over time.The mean (SD) daily number of admissions across hospitals was 26 (29) with a maximum 7‐day moving average of 107 patients. System‐wide implementation of the use of dexamethasone, remdesivir, and tocilizumab occurred within days of release of corresponding seminal publications and regulatory actions. After adjustment for differences in patient clinical profiles over time, each month of hospital admission was associated with an estimated 5% lower odds of 30‐day mortality (adjusted odds ratio [OR] = 0.95, 95% confidence interval: 0.93‐0.97, P < .001).In our large LHS, near real‐time changes in clinical management of COVID‐19 patients happened promptly as scientific publications and regulatory approvals occurred throughout the pandemic. Alongside these changes, patients with COVID‐19 experienced lower adjusted 30‐day mortality following hospital admission over time. [ FROM AUTHOR] Copyright of Learning Health Systems is the property of Wiley-Blackwell and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full . (Copyright applies to all s.)

7.
Cell Rep Med ; 2(12): 100476, 2021 12 21.
Article in English | MEDLINE | ID: covidwho-1631200

ABSTRACT

Despite extensive analyses, there remains an urgent need to delineate immune cell states that contribute to mortality in people critically ill with COVID-19. Here, we present high-dimensional profiling of blood and respiratory samples from people with severe COVID-19 to examine the association between cell-linked molecular features and mortality outcomes. Peripheral transcriptional profiles by single-cell RNA sequencing (RNA-seq)-based deconvolution of immune states are associated with COVID-19 mortality. Further, persistently high levels of an interferon signaling module in monocytes over time lead to subsequent concerted upregulation of inflammatory cytokines. SARS-CoV-2-infected myeloid cells in the lower respiratory tract upregulate CXCL10, leading to a higher risk of death. Our analysis suggests a pivotal role for viral-infected myeloid cells and protracted interferon signaling in severe COVID-19.


Subject(s)
COVID-19/immunology , COVID-19/mortality , Lung/immunology , SARS-CoV-2/pathogenicity , Aged , COVID-19/blood , COVID-19/virology , Critical Illness , Cytokines/blood , Gene Regulatory Networks , Humans , Inflammation , Lung/virology , Models, Theoretical , Monocytes/immunology , Myeloid Cells/immunology , Reproducibility of Results , Viral Load
8.
Cell reports. Medicine ; 2021.
Article in English | EuropePMC | ID: covidwho-1563998

ABSTRACT

Despite extensive analyses, there remains an urgent need to delineate immune cell states that contribute to mortality in people critically ill with COVID-19. Here, we present high-dimensional profiling of blood and respiratory samples from people with severe COVID-19 to examine the association between cell-linked molecular features and mortality outcomes. Peripheral transcriptional profiles by single-cell RNA sequencing (RNA-seq)-based deconvolution of immune states are associated with COVID-19 mortality. Further, persistently high levels of an interferon signaling module in monocytes over time lead to subsequent concerted upregulation of inflammatory cytokines. SARS-CoV-2-infected myeloid cells in the lower respiratory tract upregulate CXCL10, leading to a higher risk of death. Our analysis suggests a pivotal role for viral-infected myeloid cells and protracted interferon signaling in severe COVID-19. Graphical Cillo et al. identify transcriptional profiles in peripheral blood that are associated with mortality in people critically ill with COVID-19. Inflammatory monocyte signatures are correlated with CXCL10 in plasma and precede upregulation of inflammatory cytokines in blood. SARS-CoV-2-infected macrophages in the respiratory tract expressed CXCL10, linking peripheral and lung immune profiles.

9.
Contemp Clin Trials ; 113: 106652, 2022 02.
Article in English | MEDLINE | ID: covidwho-1560571

ABSTRACT

Outpatient treatments that limit progression to severe coronavirus disease 2019 (COVID-19) are of vital importance to optimise patient outcomes and public health. Monoclonal antibodies (mAb) demonstrated ability to decrease hospitalizations in randomized, clinical trials. However, there are many barriers to mAb treatment such as patient access and clinician education. There are no data comparing efficacy or safety of available mAbs. We sought to rapidly launch an adaptive platform trial with the goals of enhancing access to treatment, regardless of geography and socioeconomic status, and evaluating comparative efficacy and safety of available mAbs. Within 21 days from idea genesis, we allocated mAb treatment to all patients within the context of this clinical trial. Within 2 months, we closed the gap of the likelihood of receiving mAb, conditional on background positivity rate, between Black and White patients (Black patients 0.238; White patients 0.241). We describe trial infrastructure, lessons learned, and future directions for a culture of learning while doing.


Subject(s)
Antineoplastic Agents, Immunological , COVID-19 , Antibodies, Monoclonal , Antibodies, Monoclonal, Humanized , Humans , SARS-CoV-2
10.
JAMA ; 326(17): 1690-1702, 2021 Nov 02.
Article in English | MEDLINE | ID: covidwho-1525402

ABSTRACT

IMPORTANCE: The evidence for benefit of convalescent plasma for critically ill patients with COVID-19 is inconclusive. OBJECTIVE: To determine whether convalescent plasma would improve outcomes for critically ill adults with COVID-19. DESIGN, SETTING, AND PARTICIPANTS: The ongoing Randomized, Embedded, Multifactorial, Adaptive Platform Trial for Community-Acquired Pneumonia (REMAP-CAP) enrolled and randomized 4763 adults with suspected or confirmed COVID-19 between March 9, 2020, and January 18, 2021, within at least 1 domain; 2011 critically ill adults were randomized to open-label interventions in the immunoglobulin domain at 129 sites in 4 countries. Follow-up ended on April 19, 2021. INTERVENTIONS: The immunoglobulin domain randomized participants to receive 2 units of high-titer, ABO-compatible convalescent plasma (total volume of 550 mL ± 150 mL) within 48 hours of randomization (n = 1084) or no convalescent plasma (n = 916). MAIN OUTCOMES AND MEASURES: The primary ordinal end point was organ support-free days (days alive and free of intensive care unit-based organ support) up to day 21 (range, -1 to 21 days; patients who died were assigned -1 day). The primary analysis was an adjusted bayesian cumulative logistic model. Superiority was defined as the posterior probability of an odds ratio (OR) greater than 1 (threshold for trial conclusion of superiority >99%). Futility was defined as the posterior probability of an OR less than 1.2 (threshold for trial conclusion of futility >95%). An OR greater than 1 represented improved survival, more organ support-free days, or both. The prespecified secondary outcomes included in-hospital survival; 28-day survival; 90-day survival; respiratory support-free days; cardiovascular support-free days; progression to invasive mechanical ventilation, extracorporeal mechanical oxygenation, or death; intensive care unit length of stay; hospital length of stay; World Health Organization ordinal scale score at day 14; venous thromboembolic events at 90 days; and serious adverse events. RESULTS: Among the 2011 participants who were randomized (median age, 61 [IQR, 52 to 70] years and 645/1998 [32.3%] women), 1990 (99%) completed the trial. The convalescent plasma intervention was stopped after the prespecified criterion for futility was met. The median number of organ support-free days was 0 (IQR, -1 to 16) in the convalescent plasma group and 3 (IQR, -1 to 16) in the no convalescent plasma group. The in-hospital mortality rate was 37.3% (401/1075) for the convalescent plasma group and 38.4% (347/904) for the no convalescent plasma group and the median number of days alive and free of organ support was 14 (IQR, 3 to 18) and 14 (IQR, 7 to 18), respectively. The median-adjusted OR was 0.97 (95% credible interval, 0.83 to 1.15) and the posterior probability of futility (OR <1.2) was 99.4% for the convalescent plasma group compared with the no convalescent plasma group. The treatment effects were consistent across the primary outcome and the 11 secondary outcomes. Serious adverse events were reported in 3.0% (32/1075) of participants in the convalescent plasma group and in 1.3% (12/905) of participants in the no convalescent plasma group. CONCLUSIONS AND RELEVANCE: Among critically ill adults with confirmed COVID-19, treatment with 2 units of high-titer, ABO-compatible convalescent plasma had a low likelihood of providing improvement in the number of organ support-free days. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT02735707.


Subject(s)
COVID-19/therapy , ABO Blood-Group System , Adult , Aged , Critical Illness/therapy , Female , Hospital Mortality , Humans , Immunization, Passive , Length of Stay , Logistic Models , Male , Middle Aged , Respiration, Artificial/statistics & numerical data , Treatment Failure , Vasoconstrictor Agents/therapeutic use
11.
Clin Infect Dis ; 2021 Aug 10.
Article in English | MEDLINE | ID: covidwho-1349779

ABSTRACT

BACKGROUND: SARS-CoV-2 viral RNA (vRNA) is detected in the bloodstream of some patients with COVID-19 ("RNAemia") but it is not clear whether this RNAemia reflects viremia (i.e., virus particles) and how RNAemia/viremia is related to host immune responses and outcomes. METHODS: SARS-CoV-2 vRNA was quantified by ultra-sensitive RT-PCR in plasma samples (0.5-1.0 ml) from observational cohorts of 51 COVID-19 patients including 9 outpatients, 19 hospitalized (non-ICU), and 23 ICU patients, and vRNA levels compared with cross-sectional indices of COVID-19 severity and prospective clinical outcomes. We used multiple imaging methods to visualize virions in pelleted plasma. RESULTS: SARS-CoV-2 vRNA was detected in plasma of 100%, 52.6% and 11.1% of ICU, non-ICU, and outpatients respectively. Virions were detected in plasma pellets by electron tomography and immunostaining. Plasma vRNA levels were significantly higher in ICU > non-ICU > outpatients (p<0.0001); and for inpatient, plasma vRNA levels were strongly associated with higher WHO score at admission (p=0.01), maximum WHO score (p=0.002) and discharge disposition (p=0.004). A plasma vRNA level >6,000 copies/ml was strongly associated with mortality (HR: 10.7). Levels of vRNA were significantly associated with several inflammatory biomarkers (p<0.01) but not with plasma neutralizing antibody titers (p=0.8). CONCLUSIONS: Visualization of virus particles in plasma indicates that SARS-CoV-2 RNAemia is due, at least in part, to viremia. The levels of SARS-CoV-2 RNAemia quantified by ultrasensitive RT-PCR correlate strongly with disease severity, patient outcome and specific inflammatory biomarkers but not neutralizing antibody titers.

12.
N Engl J Med ; 385(9): 790-802, 2021 Aug 26.
Article in English | MEDLINE | ID: covidwho-1343498

ABSTRACT

BACKGROUND: Thrombosis and inflammation may contribute to the risk of death and complications among patients with coronavirus disease 2019 (Covid-19). We hypothesized that therapeutic-dose anticoagulation may improve outcomes in noncritically ill patients who are hospitalized with Covid-19. METHODS: In this open-label, adaptive, multiplatform, controlled trial, we randomly assigned patients who were hospitalized with Covid-19 and who were not critically ill (which was defined as an absence of critical care-level organ support at enrollment) to receive pragmatically defined regimens of either therapeutic-dose anticoagulation with heparin or usual-care pharmacologic thromboprophylaxis. The primary outcome was organ support-free days, evaluated on an ordinal scale that combined in-hospital death (assigned a value of -1) and the number of days free of cardiovascular or respiratory organ support up to day 21 among patients who survived to hospital discharge. This outcome was evaluated with the use of a Bayesian statistical model for all patients and according to the baseline d-dimer level. RESULTS: The trial was stopped when prespecified criteria for the superiority of therapeutic-dose anticoagulation were met. Among 2219 patients in the final analysis, the probability that therapeutic-dose anticoagulation increased organ support-free days as compared with usual-care thromboprophylaxis was 98.6% (adjusted odds ratio, 1.27; 95% credible interval, 1.03 to 1.58). The adjusted absolute between-group difference in survival until hospital discharge without organ support favoring therapeutic-dose anticoagulation was 4.0 percentage points (95% credible interval, 0.5 to 7.2). The final probability of the superiority of therapeutic-dose anticoagulation over usual-care thromboprophylaxis was 97.3% in the high d-dimer cohort, 92.9% in the low d-dimer cohort, and 97.3% in the unknown d-dimer cohort. Major bleeding occurred in 1.9% of the patients receiving therapeutic-dose anticoagulation and in 0.9% of those receiving thromboprophylaxis. CONCLUSIONS: In noncritically ill patients with Covid-19, an initial strategy of therapeutic-dose anticoagulation with heparin increased the probability of survival to hospital discharge with reduced use of cardiovascular or respiratory organ support as compared with usual-care thromboprophylaxis. (ATTACC, ACTIV-4a, and REMAP-CAP ClinicalTrials.gov numbers, NCT04372589, NCT04505774, NCT04359277, and NCT02735707.).


Subject(s)
Anticoagulants/administration & dosage , COVID-19/drug therapy , Heparin/administration & dosage , Thrombosis/prevention & control , Adult , Aged , Anticoagulants/adverse effects , Anticoagulants/therapeutic use , COVID-19/mortality , Female , Hemorrhage/chemically induced , Heparin/adverse effects , Heparin/therapeutic use , Heparin, Low-Molecular-Weight/therapeutic use , Hospital Mortality , Humans , Male , Middle Aged , Survival Analysis
13.
N Engl J Med ; 385(9): 777-789, 2021 Aug 26.
Article in English | MEDLINE | ID: covidwho-1343497

ABSTRACT

BACKGROUND: Thrombosis and inflammation may contribute to morbidity and mortality among patients with coronavirus disease 2019 (Covid-19). We hypothesized that therapeutic-dose anticoagulation would improve outcomes in critically ill patients with Covid-19. METHODS: In an open-label, adaptive, multiplatform, randomized clinical trial, critically ill patients with severe Covid-19 were randomly assigned to a pragmatically defined regimen of either therapeutic-dose anticoagulation with heparin or pharmacologic thromboprophylaxis in accordance with local usual care. The primary outcome was organ support-free days, evaluated on an ordinal scale that combined in-hospital death (assigned a value of -1) and the number of days free of cardiovascular or respiratory organ support up to day 21 among patients who survived to hospital discharge. RESULTS: The trial was stopped when the prespecified criterion for futility was met for therapeutic-dose anticoagulation. Data on the primary outcome were available for 1098 patients (534 assigned to therapeutic-dose anticoagulation and 564 assigned to usual-care thromboprophylaxis). The median value for organ support-free days was 1 (interquartile range, -1 to 16) among the patients assigned to therapeutic-dose anticoagulation and was 4 (interquartile range, -1 to 16) among the patients assigned to usual-care thromboprophylaxis (adjusted proportional odds ratio, 0.83; 95% credible interval, 0.67 to 1.03; posterior probability of futility [defined as an odds ratio <1.2], 99.9%). The percentage of patients who survived to hospital discharge was similar in the two groups (62.7% and 64.5%, respectively; adjusted odds ratio, 0.84; 95% credible interval, 0.64 to 1.11). Major bleeding occurred in 3.8% of the patients assigned to therapeutic-dose anticoagulation and in 2.3% of those assigned to usual-care pharmacologic thromboprophylaxis. CONCLUSIONS: In critically ill patients with Covid-19, an initial strategy of therapeutic-dose anticoagulation with heparin did not result in a greater probability of survival to hospital discharge or a greater number of days free of cardiovascular or respiratory organ support than did usual-care pharmacologic thromboprophylaxis. (REMAP-CAP, ACTIV-4a, and ATTACC ClinicalTrials.gov numbers, NCT02735707, NCT04505774, NCT04359277, and NCT04372589.).


Subject(s)
Anticoagulants/administration & dosage , COVID-19/drug therapy , Heparin/administration & dosage , Thrombosis/prevention & control , Aged , Anticoagulants/adverse effects , Anticoagulants/therapeutic use , COVID-19/mortality , Critical Illness , Female , Hemorrhage/chemically induced , Heparin/adverse effects , Heparin/therapeutic use , Hospital Mortality , Humans , Logistic Models , Male , Middle Aged , Odds Ratio , Respiration, Artificial , Treatment Failure
14.
JCI Insight ; 6(14)2021 07 22.
Article in English | MEDLINE | ID: covidwho-1341362

ABSTRACT

BACKGROUNDThe fungal cell wall constituent 1,3-ß-d-glucan (BDG) is a pathogen-associated molecular pattern that can stimulate innate immunity. We hypothesized that BDG from colonizing fungi in critically ill patients may translocate into the systemic circulation and be associated with host inflammation and outcomes.METHODSWe enrolled 453 mechanically ventilated patients with acute respiratory failure (ARF) without invasive fungal infection and measured BDG, innate immunity, and epithelial permeability biomarkers in serially collected plasma samples.RESULTSCompared with healthy controls, patients with ARF had significantly higher BDG levels (median [IQR], 26 pg/mL [15-49 pg/mL], P < 0.001), whereas patients with ARF with high BDG levels (≥40 pg/mL, 31%) had higher odds for assignment to the prognostically adverse hyperinflammatory subphenotype (OR [CI], 2.88 [1.83-4.54], P < 0.001). Baseline BDG levels were predictive of fewer ventilator-free days and worse 30-day survival (adjusted P < 0.05). Integrative analyses of fungal colonization and epithelial barrier disruption suggested that BDG may translocate from either the lung or gut compartment. We validated the associations between plasma BDG and host inflammatory responses in 97 hospitalized patients with COVID-19.CONCLUSIONBDG measurements offered prognostic information in critically ill patients without fungal infections. Further research in the mechanisms of translocation and innate immunity recognition and stimulation may offer new therapeutic opportunities in critical illness.FUNDINGUniversity of Pittsburgh Clinical and Translational Science Institute, COVID-19 Pilot Award and NIH grants (K23 HL139987, U01 HL098962, P01 HL114453, R01 HL097376, K24 HL123342, U01 HL137159, R01 LM012087, K08HK144820, F32 HL142172, K23 GM122069).


Subject(s)
COVID-19 , Candida , Immunity, Innate/immunology , Respiration, Artificial , beta-Glucans/blood , Biomarkers/blood , COVID-19/immunology , COVID-19/therapy , Candida/immunology , Candida/isolation & purification , Capillary Permeability/immunology , Critical Illness/therapy , Female , Gastrointestinal Microbiome/immunology , Humans , Male , Middle Aged , Predictive Value of Tests , Prognosis , Respiration, Artificial/adverse effects , Respiration, Artificial/methods , Respiratory Insufficiency/etiology , Respiratory Insufficiency/therapy , Respiratory System/immunology , Respiratory System/microbiology , SARS-CoV-2 , Severity of Illness Index , Survival Analysis
15.
Intensive Care Med ; 47(8): 867-886, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1305144

ABSTRACT

PURPOSE: To study the efficacy of lopinavir-ritonavir and hydroxychloroquine in critically ill patients with coronavirus disease 2019 (COVID-19). METHODS: Critically ill adults with COVID-19 were randomized to receive lopinavir-ritonavir, hydroxychloroquine, combination therapy of lopinavir-ritonavir and hydroxychloroquine or no antiviral therapy (control). The primary endpoint was an ordinal scale of organ support-free days. Analyses used a Bayesian cumulative logistic model and expressed treatment effects as an adjusted odds ratio (OR) where an OR > 1 is favorable. RESULTS: We randomized 694 patients to receive lopinavir-ritonavir (n = 255), hydroxychloroquine (n = 50), combination therapy (n = 27) or control (n = 362). The median organ support-free days among patients in lopinavir-ritonavir, hydroxychloroquine, and combination therapy groups was 4 (- 1 to 15), 0 (- 1 to 9) and-1 (- 1 to 7), respectively, compared to 6 (- 1 to 16) in the control group with in-hospital mortality of 88/249 (35%), 17/49 (35%), 13/26 (50%), respectively, compared to 106/353 (30%) in the control group. The three interventions decreased organ support-free days compared to control (OR [95% credible interval]: 0.73 [0.55, 0.99], 0.57 [0.35, 0.83] 0.41 [0.24, 0.72]), yielding posterior probabilities that reached the threshold futility (≥ 99.0%), and high probabilities of harm (98.0%, 99.9% and > 99.9%, respectively). The three interventions reduced hospital survival compared with control (OR [95% CrI]: 0.65 [0.45, 0.95], 0.56 [0.30, 0.89], and 0.36 [0.17, 0.73]), yielding high probabilities of harm (98.5% and 99.4% and 99.8%, respectively). CONCLUSION: Among critically ill patients with COVID-19, lopinavir-ritonavir, hydroxychloroquine, or combination therapy worsened outcomes compared to no antiviral therapy.


Subject(s)
COVID-19 , Ritonavir , Adult , Antiviral Agents/therapeutic use , Bayes Theorem , COVID-19/drug therapy , Critical Illness , Drug Combinations , Humans , Hydroxychloroquine/therapeutic use , Lopinavir/therapeutic use , Ritonavir/therapeutic use , SARS-CoV-2
16.
Ann Am Thorac Soc ; 18(7): 1202-1210, 2021 07.
Article in English | MEDLINE | ID: covidwho-1305584

ABSTRACT

Rationale: There is an urgent need for improved understanding of the mechanisms and clinical characteristics of acute respiratory distress syndrome (ARDS) due to coronavirus disease (COVID-19).Objectives: To compare key demographic and physiologic parameters, biomarkers, and clinical outcomes of COVID-19 ARDS and ARDS secondary to direct lung injury from other etiologies of pneumonia.Methods: We enrolled 27 patients with COVID-19 ARDS in a prospective, observational cohort study and compared them with a historical, pre-COVID-19 cohort of patients with viral ARDS (n = 14), bacterial ARDS (n = 21), and ARDS due to culture-negative pneumonia (n = 30). We recorded clinical demographics; measured respiratory mechanical parameters; collected serial peripheral blood specimens for measurement of plasma interleukin (IL)-6, IL-8, and IL-10; and followed patients prospectively for patient-centered outcomes. We conducted between-group comparisons with nonparametric tests and analyzed time-to-event outcomes with Kaplan-Meier and Cox proportional hazards models.Results: Patients with COVID-19 ARDS had higher body mass index and were more likely to be Black, or residents of skilled nursing facilities, compared with those with non-COVID-19 ARDS (P < 0.05). Patients with COVID-19 had lower delivered minute ventilation compared with bacterial and culture-negative ARDS (post hoc P < 0.01) but not compared with viral ARDS. We found no differences in static compliance, hypoxemic indices, or carbon dioxide clearance between groups. Patients with COVID-19 had lower IL-6 levels compared with bacterial and culture-negative ARDS at early time points after intubation but no differences in IL-6 levels compared with viral ARDS. Patients with COVID-19 had longer duration of mechanical ventilation but similar 60-day mortality in both unadjusted and adjusted analyses.Conclusions: COVID-19 ARDS bears several similarities to viral ARDS but demonstrates lower minute ventilation and lower systemic levels of IL-6 compared with bacterial and culture-negative ARDS. COVID-19 ARDS was associated with longer dependence on mechanical ventilation compared with non-COVID-19 ARDS. Such detectable differences of COVID-19 do not merit deviation from evidence-based management of ARDS but suggest priorities for clinical research to better characterize and treat this new clinical entity.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Biomarkers , Demography , Humans , Prospective Studies , Respiration, Artificial , Respiratory Distress Syndrome/epidemiology , SARS-CoV-2
18.
Trials ; 22(1): 363, 2021 May 25.
Article in English | MEDLINE | ID: covidwho-1243818

ABSTRACT

OBJECTIVES: The primary objective is to evaluate the comparative effectiveness of COVID-19 specific monoclonal antibodies (mABs) with US Food and Drug Administration (FDA) Emergency Use Authorization (EUA), alongside UPMC Health System efforts to increase patient access to these mABs. TRIAL DESIGN: Open-label, pragmatic, comparative effectiveness platform trial with response-adaptive randomization PARTICIPANTS: We will evaluate patients who meet the eligibility criteria stipulated by the COVID-19 mAB EUAs who receive mABs within the UPMC Health System, including infusion centers and emergency departments. EUA eligibility criteria include patients with mild to moderate COVID-19, <10 days of symptoms, and who are at high risk for progressing to severe COVID-19 and/or hospitalization (elderly, obese, and/or with specific comorbidities). The EUA criteria exclude patients who require oxygen for the treatment of COVID-19 and patients already hospitalized for the treatment of COVID-19. We will use data collected for routine clinical care, including data entered into the electronic medical record and from follow-up calls. INTERVENTION AND COMPARATOR: The interventions are the COVID-19 specific mABs authorized by the EUAs. All aspects of mAB treatment, including eligibility criteria, dosing, and post-infusion monitoring, are as per the EUAs. As a comparative effectiveness trial, all patients receive mAB treatment, and the interventions are compared against each other. When U.S. government mAB policies change (e.g., FDA grants or revokes EUAs), UPMC Health System policies and the evaluated mAB interventions will accordingly change. From November 2020 to February 2021, FDA issued EUAs for three mAB treatments (bamlanivimab; bamlanivimab and etesevimab; and casirivimab and imdevimab), and at trial launch on March 10, 2021 we evaluated all three. Due to a sustained increase in SARS-CoV-2 variants in the United States resistant to bamlanivimab administered alone, on March 24, 2021 the U.S. Government halted distribution of bamlanivimab alone, and UPMC accordingly halted bamlanivimab monotherapy on March 31, 2021. On April 16, 2021, FDA revoked the EUA for bamlanivimab monotherapy. At the time of manuscript submission, we are therefore evaluating the two mAB treatments authorized by EUAs (bamlanivimab and etesevimab; and casirivimab and imdevimab). MAIN OUTCOMES: The primary outcome is total hospital free days (HFD) at 28 days after mAB administration, calculated as 28 minus the number of days during the index stay (if applicable - e.g., for patients admitted to hospital after mAB administration in the emergency department) minus the number of days readmitted during the 28 days after treatment. This composite endpoint captures the number of days from the day of mAB administration to the 28 days thereafter, during which the patient is alive and free of hospitalization. Death within 28 days is recorded as -1 HFD, as the worst outcome. RANDOMISATION: We will start with equal allocation. Due to uncertainty in sample size, we will use a Bayesian adaptive design and response adaptive randomization to ensure ability to provide statistical inference despite variable sample size. When mABs are ordered by UPMC physicians as a generic referral order, the order is filled by UPMC pharmacy via therapeutic interchange. OPTIMISE-C19 provides the therapeutic interchange via random allocation. Infusion center operations teams and pharmacists use a mAB assignment application embedded in the electronic medical record to determine the random allocation. BLINDING (MASKING): This trial is open-label. However, outcome assessors conducting follow-up calls at day 28 are blinded to mAB assignment, and investigators are blinded to by-mAB aggregate outcome data until a statistical platform trial conclusion is reached. NUMBERS TO BE RANDOMISED (SAMPLE SIZE): Sample size will be determined by case volume throughout the course of the pandemic, supply of FDA authorized mABs, and by that needed to reach a platform trial conclusion of inferiority, superiority, or futility of a given mAB. The trial will continue as long as more than one mAB type is available under EUA, and their comparative effectiveness is uncertain. TRIAL STATUS: Protocol Version 1.0, February 24, 2021. Recruitment began March 10, 2021 and is ongoing at the time of manuscript submission. The estimated recruitment end date is February 22, 2022, though the final end date is dependent on how the pandemic evolves, mAB availability, and when final platform trial conclusions are reached. As noted above, due to U.S. Government decisions, UPMC Health System halted bamlanivimab monotherapy on March 31, 2021. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT04790786 . Registered March 10, 2021 FULL PROTOCOL: The full protocol is attached as an additional file, accessible from the Trials website (Additional file 1). In the interest in expediting dissemination of this material, the familiar formatting has been eliminated; this Letter serves as a summary of the key elements of the full protocol.


Subject(s)
COVID-19 , Aged , Antibodies, Monoclonal/adverse effects , Bayes Theorem , Humans , Random Allocation , Randomized Controlled Trials as Topic , SARS-CoV-2 , Treatment Outcome
19.
Nat Commun ; 12(1): 2349, 2021 04 15.
Article in English | MEDLINE | ID: covidwho-1189222

ABSTRACT

Substantial COVID-19 research investment has been allocated to randomized clinical trials (RCTs) on hydroxychloroquine/chloroquine, which currently face recruitment challenges or early discontinuation. We aim to estimate the effects of hydroxychloroquine and chloroquine on survival in COVID-19 from all currently available RCT evidence, published and unpublished. We present a rapid meta-analysis of ongoing, completed, or discontinued RCTs on hydroxychloroquine or chloroquine treatment for any COVID-19 patients (protocol: https://osf.io/QESV4/ ). We systematically identified unpublished RCTs (ClinicalTrials.gov, WHO International Clinical Trials Registry Platform, Cochrane COVID-registry up to June 11, 2020), and published RCTs (PubMed, medRxiv and bioRxiv up to October 16, 2020). All-cause mortality has been extracted (publications/preprints) or requested from investigators and combined in random-effects meta-analyses, calculating odds ratios (ORs) with 95% confidence intervals (CIs), separately for hydroxychloroquine and chloroquine. Prespecified subgroup analyses include patient setting, diagnostic confirmation, control type, and publication status. Sixty-three trials were potentially eligible. We included 14 unpublished trials (1308 patients) and 14 publications/preprints (9011 patients). Results for hydroxychloroquine are dominated by RECOVERY and WHO SOLIDARITY, two highly pragmatic trials, which employed relatively high doses and included 4716 and 1853 patients, respectively (67% of the total sample size). The combined OR on all-cause mortality for hydroxychloroquine is 1.11 (95% CI: 1.02, 1.20; I² = 0%; 26 trials; 10,012 patients) and for chloroquine 1.77 (95%CI: 0.15, 21.13, I² = 0%; 4 trials; 307 patients). We identified no subgroup effects. We found that treatment with hydroxychloroquine is associated with increased mortality in COVID-19 patients, and there is no benefit of chloroquine. Findings have unclear generalizability to outpatients, children, pregnant women, and people with comorbidities.


Subject(s)
COVID-19/drug therapy , COVID-19/mortality , Chloroquine/adverse effects , Hydroxychloroquine/adverse effects , Pregnancy Complications, Infectious/mortality , Adult , COVID-19/complications , COVID-19/virology , Child , Chloroquine/administration & dosage , Combined Modality Therapy/adverse effects , Combined Modality Therapy/methods , Comorbidity , Female , Humans , Hydroxychloroquine/administration & dosage , International Cooperation , Odds Ratio , Patient Participation/statistics & numerical data , Pregnancy , Pregnancy Complications, Infectious/drug therapy , Pregnancy Complications, Infectious/virology , Randomized Controlled Trials as Topic/statistics & numerical data , SARS-CoV-2
20.
N Engl J Med ; 384(16): 1491-1502, 2021 04 22.
Article in English | MEDLINE | ID: covidwho-1101727

ABSTRACT

BACKGROUND: The efficacy of interleukin-6 receptor antagonists in critically ill patients with coronavirus disease 2019 (Covid-19) is unclear. METHODS: We evaluated tocilizumab and sarilumab in an ongoing international, multifactorial, adaptive platform trial. Adult patients with Covid-19, within 24 hours after starting organ support in the intensive care unit (ICU), were randomly assigned to receive tocilizumab (8 mg per kilogram of body weight), sarilumab (400 mg), or standard care (control). The primary outcome was respiratory and cardiovascular organ support-free days, on an ordinal scale combining in-hospital death (assigned a value of -1) and days free of organ support to day 21. The trial uses a Bayesian statistical model with predefined criteria for superiority, efficacy, equivalence, or futility. An odds ratio greater than 1 represented improved survival, more organ support-free days, or both. RESULTS: Both tocilizumab and sarilumab met the predefined criteria for efficacy. At that time, 353 patients had been assigned to tocilizumab, 48 to sarilumab, and 402 to control. The median number of organ support-free days was 10 (interquartile range, -1 to 16) in the tocilizumab group, 11 (interquartile range, 0 to 16) in the sarilumab group, and 0 (interquartile range, -1 to 15) in the control group. The median adjusted cumulative odds ratios were 1.64 (95% credible interval, 1.25 to 2.14) for tocilizumab and 1.76 (95% credible interval, 1.17 to 2.91) for sarilumab as compared with control, yielding posterior probabilities of superiority to control of more than 99.9% and of 99.5%, respectively. An analysis of 90-day survival showed improved survival in the pooled interleukin-6 receptor antagonist groups, yielding a hazard ratio for the comparison with the control group of 1.61 (95% credible interval, 1.25 to 2.08) and a posterior probability of superiority of more than 99.9%. All secondary analyses supported efficacy of these interleukin-6 receptor antagonists. CONCLUSIONS: In critically ill patients with Covid-19 receiving organ support in ICUs, treatment with the interleukin-6 receptor antagonists tocilizumab and sarilumab improved outcomes, including survival. (REMAP-CAP ClinicalTrials.gov number, NCT02735707.).


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , COVID-19/drug therapy , Receptors, Interleukin-6/antagonists & inhibitors , Adult , Aged , Antibodies, Monoclonal, Humanized/adverse effects , COVID-19/complications , COVID-19/mortality , COVID-19/therapy , Critical Illness , Female , Hospital Mortality , Humans , Intensive Care Units , Male , Middle Aged , Odds Ratio , Respiration, Artificial
SELECTION OF CITATIONS
SEARCH DETAIL