Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Add filters

Document Type
Year range
arxiv; 2021.
Preprint in English | PREPRINT-ARXIV | ID: ppzbmed-2109.10004v1


The optimal allocation of vaccines to population subgroups over time is a challenging health care management problem. In the context of a pandemic, the interaction between vaccination policies adopted by multiple agents and the cooperation (or lack thereof) creates a complex environment that affects the global transmission dynamics of the disease. In this study, we take the perspective of decision-making agents that aim to minimize the size of their susceptible populations and must allocate vaccine under limited supply. We assume that vaccine efficiency rates are unknown to agents and we propose an optimization policy based on Thompson sampling to learn mean vaccine efficiency rates over time. Furthermore, we develop a budget-balanced resource sharing mechanism to promote cooperation among agents. We apply the proposed framework to the COVID-19 pandemic. We use a raster model of the world where agents represent the main countries worldwide and interact in a global mobility network to generate multiple problem instances. Our numerical results show that the proposed vaccine allocation policy achieves a larger reduction in the number of susceptible individuals, infections and deaths globally compared to a population-based policy. In addition, we show that, under a fixed global vaccine allocation budget, most countries can reduce their national number of infections and deaths by sharing their budget with countries with which they have a relatively high mobility exchange. The proposed framework can be used to improve policy-making in health care management by national and global health authorities.

medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.05.02.20087270


BackgroundIran has been the hardest hit country by the outbreak of SARS-CoV-2 in the Middle East with 74,877 confirmed cases and 4,683 deaths as of 15 April 2020. With a relatively high case fatality ratio and limited testing capacity, the number of confirmed cases reported is suspected to suffer from significant under-reporting. Therefore, understanding the transmission dynamics of COVID-19 and assessing the effectiveness of the interventions that have taken place in Iran while accounting for the uncertain level of underreporting is of critical importance. We use a mathematical epidemic model utilizing official confirmed data and estimates of underreporting to understand how transmission in Iran has been changing between February and April 2020. MethodsWe developed a compartmental transmission model to estimate the effective reproduction number and its fluctuations since the beginning of the outbreak in Iran. We associate the variations in the effective reproduction number with a timeline of interventions and national events. The estimation method also accounts for the underreporting due to low case ascertainment by estimating the percentage of symptomatic cases using delay-adjusted case fatality ratio based on the distribution of the delay from hospitalization-to-death. FindingsOur estimates of the effective reproduction number ranged from 0.66 to 1.73 between February and April 2020, with a median of 1.16. We estimate a reduction in the effective reproduction number during this period, from 1.73 (95% CI 1.60 - 1.87) on 1 March 2020 to 0.69 (95% CI 0.68-0.70) on 15 April 2020, due to various non-pharmaceutical interventions including school closures, a ban on public gatherings including sports and religious events, and full or partial closure of non-essential businesses. Based on these estimates and given that a near complete containment is no longer feasible, it is likely that the outbreak may continue until the end of the 2020 if the current level of physical distancing and interventions continue and no effective vaccination or therapeutic are developed and made widely available. InterpretationThe series of non-pharmaceutical interventions and the public compliance that took place in Iran are found to be effective in slowing down the speed of the spread of COVID-19 within the studied time period. However, we argue that if the impact of underreporting is overlooked, the estimated transmission and control dynamics could mislead the public health decisions, policy makers, and general public especially in the earlier stages of the outbreak. FundingNil.