Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Preprint in English | medRxiv | ID: ppmedrxiv-22281171

ABSTRACT

ObjectivesSotrovimab is one of several therapeutic agents that have been licensed to treat people at risk of severe outcomes following COVID-19 infection. However, there are concerns that it has reduced efficacy to treat people with the BA.2 sub-lineage of the Omicron (B.1.1.529) SARS-CoV-2 variant. We compared individuals with the BA.1 or BA.2 sub-lineage of the Omicron variant treated Sotrovimab in the community to assess their risk of hospital admission. MethodsWe performed a retrospective cohort study of individuals treated with Sotrovimab in the community and either had BA.1 or BA.2 variant classification. ResultsUsing a Stratified Cox regression model it was estimated that the hazard ratios (HR) of hospital admission with a length of stay of two or more days was 1.17 for BA.2 compared to BA.1 (95% CI 0.74-1.86) and for such admissions where COVID-19 ICD-10 codes was recorded the HR was 0.98 (95% CI 0.58-1.65). ConclusionThese results suggest that the risk of hospital admission is similar between BA.1 and BA.2 cases treated with Sotrovimab in the community.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-500063

ABSTRACT

Some COVID-19 patients are unable to clear their infection or are at risk of severe disease, requiring treatment with neutralising monoclonal antibodies (nmAb) and/or antivirals. The rapid roll-out of novel therapeutics means there is limited understanding of the likely genetic barrier to drug resistance. Unprecedented genomic surveillance of SARS-CoV-2 in the UK has enabled a genome-first approach to the detection of emerging drug resistance. Here we report the accrual of mutations in Delta and Omicron cases treated with casirivimab+imdevimab and sotrovimab respectively. Mutations occur within the epitopes of the respective nmAbs. For casirivimab+imdevimab these are present on contiguous raw reads, simultaneously affecting both components. Using surface plasmon resonance and pseudoviral neutralisation assays we demonstrate these mutations reduce or completely abrogate antibody affinity and neutralising activity, suggesting they are driven by immune evasion. In addition, we show that some mutations also reduce the neutralising activity of vaccine-induced serum.

3.
Preprint in English | medRxiv | ID: ppmedrxiv-22272691

ABSTRACT

The BA.1 sub-lineage of the Omicron (B.1.1.529) variant, first detected in the UK in mid-November 2021, rapidly became the dominant strain partly due to reduced vaccine effectiveness. An increase in a second Omicron sub-lineage BA.2 was observed in early January 2022. In this study we use a test-negative case control study design to estimate vaccine effectiveness against symptomatic disease with BA.1 and BA.2 after one or two doses of BNT162b2, ChAdOx1-S or mRNA-1273, and after booster doses of BNT162b2 or mRNA-1273 during a period of co-circulation. Overall, there was no evidence that vaccine effectiveness against symptomatic disease is reduced following infection with the BA.2 sub-lineage as compared to BA.1. Furthermore, similar rates of waning were observed after the second and booster dose for each sub-lineage. These data provide reassuring evidence of the effectiveness of the vaccines currently in use against symptomatic disease caused by BA.2.

4.
Preprint in English | bioRxiv | ID: ppbiorxiv-481609

ABSTRACT

The first SARS-CoV-2 variant of concern (VOC) to be designated was lineage B.1.1.7, later labelled by the World Health Organisation (WHO) as Alpha. Originating in early Autumn but discovered in December 2020, it spread rapidly and caused large waves of infections worldwide. The Alpha variant is notable for being defined by a long ancestral phylogenetic branch with an increased evolutionary rate, along which only two sequences have been sampled. Alpha genomes comprise a well-supported monophyletic clade within which the evolutionary rate is more typical of SARS-CoV-2. The Alpha epidemic continued to grow despite the continued restrictions on social mixing across the UK, and the imposition of new restrictions, in particular the English national lockdown in November 2020. While these interventions succeeded in reducing the absolute number of cases, the impact of these non-pharmaceutical interventions was predominantly to drive the decline of the SARS-CoV-2 lineages which preceded Alpha. We investigate the only two sampled sequences that fall on the branch ancestral to Alpha. We find that one is likely to be a true intermediate sequence, providing information about the order of mutational events that led to Alpha. We explore alternate hypotheses that can explain how Alpha acquired a large number of mutations yet remained largely unobserved in a region of high genomic surveillance: an under-sampled geographical location, a non-human animal population, or a chronically-infected individual. We conclude that the last hypothesis provides the best explanation of the observed behaviour and dynamics of the variant, although we find that the individual need not be immunocompromised, as persistently-infected immunocompetent hosts also display a higher within-host rate of evolution. Finally, we compare the ancestral branches and mutation profiles of other VOCs to each other, and identify that Delta appears to be an outlier both in terms of the genomic locations of its defining mutations, and its lack of rapid evolutionary rate on the ancestral branch. As new variants, such as Omicron, continue to evolve (potentially through similar mechanisms) it remains important to investigate the origins of other variants to identify ways to potentially disrupt their evolution and emergence.

5.
Preprint in English | medRxiv | ID: ppmedrxiv-21267606

ABSTRACT

The Delta variant of concern of SARS-CoV-2 has spread globally causing large outbreaks and resurgences of COVID-19 cases1-3. The emergence of Delta in the UK occurred on the background of a heterogeneous landscape of immunity and relaxation of non-pharmaceutical interventions4,5. Here we analyse 52,992 Delta genomes from England in combination with 93,649 global genomes to reconstruct the emergence of Delta, and quantify its introduction to and regional dissemination across England, in the context of changing travel and social restrictions. Through analysis of human movement, contact tracing, and virus genomic data, we find that the focus of geographic expansion of Delta shifted from India to a more global pattern in early May 2021. In England, Delta lineages were introduced >1,000 times and spread nationally as non-pharmaceutical interventions were relaxed. We find that hotel quarantine for travellers from India reduced onward transmission from importations; however the transmission chains that later dominated the Delta wave in England had been already seeded before restrictions were introduced. In England, increasing inter-regional travel drove Deltas nationwide dissemination, with some cities receiving >2,000 observable lineage introductions from other regions. Subsequently, increased levels of local population mixing, not the number of importations, was associated with faster relative growth of Delta. Among US states, we find that regions that previously experienced large waves also had faster Delta growth rates, and a model including interactions between immunity and human behaviour could accurately predict the rise of Delta there. Deltas invasion dynamics depended on fine scale spatial heterogeneity in immunity and contact patterns and our findings will inform optimal spatial interventions to reduce transmission of current and future VOCs such as Omicron.

6.
Preprint in English | medRxiv | ID: ppmedrxiv-21267615

ABSTRACT

BackgroundA rapid increase in cases due to the SARS-CoV-2 Omicron (B.1.1.529) variant in highly vaccinated populations has raised concerns about the effectiveness of current vaccines. MethodsWe used a test-negative case-control design to estimate vaccine effectiveness (VE) against symptomatic disease caused by the Omicron and Delta variants in England. VE was calculated after primary immunisation with two BNT162b2 or ChAdOx1 doses, and at 2+ weeks following a BNT162b2 booster. ResultsBetween 27 November and 06 December 2021, 581 and 56,439 eligible Omicron and Delta cases respectively were identified. There were 130,867 eligible test-negative controls. There was no effect against Omicron from 15 weeks after two ChAdOx1 doses, while VE after two BNT162b2 doses was 88.0% (95%CI: 65.9 to 95.8%) 2-9 weeks after dose 2, dropping to between 34 and 37% from 15 weeks post dose 2.From two weeks after a BNT162b2 booster, VE increased to 71.4% (95%CI: 41.8 to 86.0%) for ChAdOx1 primary course recipients and 75.5% (95%CI: 56.1 to 86.3%) for BNT162b2 primary course recipients. For cases with Delta, VE was 41.8% (95%CI: 39.4-44.1%) at 25+ weeks after two ChAdOx1 doses, increasing to 93.8% (95%CI: 93.2-94.3%) after a BNT162b2 booster. With a BNT162b2 primary course, VE was 63.5% (95%CI: 61.4 to 65.5%) 25+ weeks after dose 2, increasing to 92.6% (95%CI: 92.0-93.1%) two weeks after the booster. ConclusionsPrimary immunisation with two BNT162b2 or ChAdOx1 doses provided no or limited protection against symptomatic disease with the Omicron variant. Boosting with BNT162b2 following either primary course significantly increased protection.

7.
Preprint in English | medRxiv | ID: ppmedrxiv-21263583

ABSTRACT

BackgroundCOVID-19 vaccines have been used for 9 months in the UK. Real world data have demonstrated the vaccines to be highly effective against COVID-19, severe disease and death. Here, we estimate vaccine effectiveness over time since the second dose of Comirnaty, Vaxzevria and Spikevax in England. MethodsWe used a test-negative case-control design to estimate vaccine effectiveness against symptomatic disease, hospitalisation and mortality by age, comorbidity status and over time after the second dose to investigate waning separately for Alpha and Delta variants. ResultsVaccine effectiveness against symptomatic disease peaked in the early weeks after the second dose and then fell to 47.3 (95% CI 45 to 49.6) and 69.7 (95% CI 68.7 to 70.5) by 20+ weeks against the Delta variant for Vaxzevria and Comirnaty, respectively. Waning of vaccine effectiveness was greater for 65+ year-olds compared to 40-64 year-olds. Vaccine effectiveness fell less against hospitalisations to 77.0 (70.3 to 82.3) and 92.7 (90.3 to 94.6) beyond 20 weeks post-vaccination and 78.7 (95% CI 52.7 to 90.4) and 90.4 (95% CI 85.1 to 93.8) against death for Vaxzevria and Comirnaty, respectively. Greater waning was observed among 65+ year-olds in a clinically extremely vulnerable group and 40-64-year olds with underlying medical conditions compared to healthy adults. ConclusionsWe observed limited waning in vaccine effectiveness against hospitalisation and death more than 20 weeks post-vaccination with Vaxzevria or Comirnaty. Waning was greater in older adults and those in a clinical risk group, suggesting that these individuals should be prioritised for booster doses.

8.
Preprint in English | medRxiv | ID: ppmedrxiv-21257633

ABSTRACT

The evolution of the SARS-CoV-2 pandemic continuously produces new variants, which warrant timely epidemiological characterisation. Here we use the dense genomic surveillance generated by the COVID-19 Genomics UK Consortium to reconstruct the dynamics of 71 different lineages in each of 315 English local authorities between September 2020 and June 2021. This analysis reveals a series of sub-epidemics that peaked in the early autumn of 2020, followed by a jump in transmissibility of the B.1.1.7/Alpha lineage. Alpha grew when other lineages declined during the second national lockdown and regionally tiered restrictions between November and December 2020. A third more stringent national lockdown suppressed Alpha and eliminated nearly all other lineages in early 2021. However, a series of variants (mostly containing the spike E484K mutation) defied these trends and persisted at moderately increasing proportions. Accounting for sustained introductions, however, indicates that their transmissibility is unlikely to have exceeded that of Alpha. Finally, B.1.617.2/Delta was repeatedly introduced to England and grew rapidly in the early summer of 2021, constituting approximately 98% of sampled SARS-CoV-2 genomes on June 26.

9.
Preprint in English | medRxiv | ID: ppmedrxiv-21257658

ABSTRACT

BackgroundThe B.1.617.2 COVID-19 variant has contributed to the surge in cases in India and has now been detected across the globe, including a notable increase in cases in the UK. We estimate the effectiveness of the BNT162b2 and ChAdOx1 COVID-19 vaccines against this variant. MethodsA test negative case control design was used to estimate the effectiveness of vaccination against symptomatic disease with both variants over the period that B.1.617.2 began circulating with cases identified based on sequencing and S-gene target status. Data on all symptomatic sequenced cases of COVID-19 in England was used to estimate the proportion of cases with B.1.617.2 compared to the predominant strain (B.1.1.7) by vaccination status. ResultsEffectiveness was notably lower after 1 dose of vaccine with B.1.617.2 cases 33.5% (95%CI: 20.6 to 44.3) compared to B.1.1.7 cases 51.1% (95%CI: 47.3 to 54.7) with similar results for both vaccines. With BNT162b2 2 dose effectiveness reduced from 93.4% (95%CI: 90.4 to 95.5) with B.1.1.7 to 87.9% (95%CI: 78.2 to 93.2) with B.1.617.2. With ChAdOx1 2 dose effectiveness reduced from 66.1% (95% CI: 54.0 to 75.0) with B.1.1.7 to 59.8% (95%CI: 28.9 to 77.3) with B.1.617.2. Sequenced cases detected after 1 or 2 doses of vaccination had a higher odds of infection with B.1.617.2 compared to unvaccinated cases (OR 1.40; 95%CI: 1.13-1.75). ConclusionsAfter 2 doses of either vaccine there were only modest differences in vaccine effectiveness with the B.1.617.2 variant. Absolute differences in vaccine effectiveness were more marked with dose 1. This would support maximising vaccine uptake with two doses among vulnerable groups.

10.
Preprint in English | medRxiv | ID: ppmedrxiv-21253590

ABSTRACT

BackgroundMitigation of SARS-CoV-2 transmission from international travel is a priority. Travellers from countries with travel restrictions (closed travel-corridors) were required to quarantine for 14 days over Summer 2020 in England. We describe the genomic epidemiology of travel-related cases in England and evaluate the effectiveness of this travel policy. MethodsBetween 27/05/2020 and 13/09/2020, probable travel-related SARS-CoV-2 cases and their contacts were identified and combined with UK SARS-CoV-2 sequencing data. The epidemiology and demographics of cases was identified, and the number of contacts per case modelled using negative binomial regression to estimate the effect of travel restriction, and any variation by age, sex and calendar date. Unique travel-related SARS-CoV-2 genomes in the COG-UK dataset were identified to estimate the effect travel restrictions on cluster size generated from these. The Polecat Clustering Tool was used to identify a travel-related SARS-CoV-2 cluster of infection. Findings4,207 travel-related SARS-CoV-2 cases are identified. 51.2% (2155/4207) of cases reported travel to one of three countries; 21.0% (882) Greece, 16.3% (685) Croatia and 14.0% (589) Spain. Median number of contacts per case was 3 (IQR 1-5), and greatest for the 16-20 age-group (9.0, 95% C.I.=5.6-14.5), which saw the largest attenuation by travel restriction. Travel restriction was associated with a 40% (rate ratio=0.60, 95% C.I.=0.37-0.95) lower rate of contacts. 827/4207 (19.7%) of cases had high-quality SARS-CoV-2 genomes available. Fewer genomically-linked cases were observed for index cases related to countries with travel restrictions compared to cases from non-travel restriction countries (rate ratio=0.17, 95% C.I.=0.05-0.52). A large travel-related cluster dispersed across England is identified through genomics, confirmed with contact-tracing data. InterpretationThis study demonstrates the efficacy of travel restriction policy in reducing the onward transmission of imported cases. FundingWellcome Trust, Biotechnology and Biological Sciences Research Council, UK Research & Innovation, National Institute of Health Research, Wellcome Sanger Institute. RESEARCH IN CONTEXTO_ST_ABSEvidence before this studyC_ST_ABSWe searched PubMed, medRxiv, bioRxiv, Web of Science and Scopus for the terms (COVID-19 OR SARS-COV-2) AND (imported or importation) AND (sequenc* OR genom* or WGS). We filtered the 55 articles identified through this search and rejected any that did not undertake SARS-CoV-2 sequencing as part of an epidemiological investigation for importation into a different country. The remaining 20 papers were reviewed in greater detail to understand the patterns of importation and the methods used in each case. Added value of this studyThis is the first published study on importations of SARS-CoV-2 into England using genomics. Plessis et al., (2021) used a predictive model to infer the number of importations in to the UK from all SARS-CoV-2 genomes generated before 26th June 2020. The current study assesses the period 27/05/2020 to 13/09/2020 and presents findings of case-reported travel linked to genomic data. Two unpublished reports exist for Wales and Scotland, although only examine a comparatively small number of importations. Implications of all the available evidenceThis large-scale study has a number of findings that are pertinent to public health and of global significance, not available from prior evidence to our knowledge. The study demonstrates travel restrictions, through the implementation of travel-corridors, are effective in reducing the number of contacts per case based on observational data. Age has a significant effect on the number of contacts and this can be mitigated with travel restrictions. Analysis of divergent clusters indicates travel restrictions can reduce the number of onwards cases following a travel-associated case. Analysis of divergent clusters can allow for importations to be identified from genomics, as subsequently evidenced by cluster characteristics derived from contact tracing. The majority of importations of SARS-CoV-2 in England over Summer 2020 were from coastal European countries. The highest number of cases and onward contacts were from Greece, which was largely exempt from self-isolation requirements (bar some islands in September at the end of the study period). Systematic monitoring of imported SARS-CoV-2 cases would help refine implementation of travel restrictions. Finally, along with multiple studies, this study highlights the use of genomics to monitor and track importations of SARS-CoV-2 mutations of interest; this will be of particular use as the repertoire of clinically relevant SARS-CoV-2 variants expand over time and globally.

11.
Preprint in English | medRxiv | ID: ppmedrxiv-21253218

ABSTRACT

BackgroundNatural and vaccine-induced immunity will play a key role in controlling the SARS-CoV-2 pandemic. SARS-CoV-2 variants have the potential to evade natural and vaccine-induced immunity. MethodsIn a longitudinal cohort study of healthcare workers (HCWs) in Oxfordshire, UK, we investigated the protection from symptomatic and asymptomatic PCR-confirmed SARS-CoV-2 infection conferred by vaccination (Pfizer-BioNTech BNT162b2, Oxford-AstraZeneca ChAdOx1 nCOV-19) and prior infection (determined using anti-spike antibody status), using Poisson regression adjusted for age, sex, temporal changes in incidence and role. We estimated protection conferred after one versus two vaccinations and from infections with the B.1.1.7 variant identified using whole genome sequencing. Results13,109 HCWs participated; 8285 received the Pfizer-BioNTech vaccine (1407 two doses) and 2738 the Oxford-AstraZeneca vaccine (49 two doses). Compared to unvaccinated seronegative HCWs, natural immunity and two vaccination doses provided similar protection against symptomatic infection: no HCW vaccinated twice had symptomatic infection, and incidence was 98% lower in seropositive HCWs (adjusted incidence rate ratio 0.02 [95%CI <0.01-0.18]). Two vaccine doses or seropositivity reduced the incidence of any PCR-positive result with or without symptoms by 90% (0.10 [0.02-0.38]) and 85% (0.15 [0.08-0.26]) respectively. Single-dose vaccination reduced the incidence of symptomatic infection by 67% (0.33 [0.21-0.52]) and any PCR-positive result by 64% (0.36 [0.26-0.50]). There was no evidence of differences in immunity induced by natural infection and vaccination for infections with S-gene target failure and B.1.1.7. ConclusionNatural infection resulting in detectable anti-spike antibodies and two vaccine doses both provide robust protection against SARS-CoV-2 infection, including against the B.1.1.7 variant. SummaryNatural infection resulting in detectable anti-spike antibodies and two vaccine doses both provided [≥] 85% protection against symptomatic and asymptomatic SARS-CoV-2 infection in healthcare workers, including against the B.1.1.7 variant. Single dose vaccination reduced symptomatic infection by 67%.

12.
Preprint in English | medRxiv | ID: ppmedrxiv-20249034

ABSTRACT

The SARS-CoV-2 lineage B.1.1.7, now designated Variant of Concern 202012/01 (VOC) by Public Health England, originated in the UK in late Summer to early Autumn 2020. We examine epidemiological evidence for this VOC having a transmission advantage from several perspectives. First, whole genome sequence data collected from community-based diagnostic testing provides an indication of changing prevalence of different genetic variants through time. Phylodynamic modelling additionally indicates that genetic diversity of this lineage has changed in a manner consistent with exponential growth. Second, we find that changes in VOC frequency inferred from genetic data correspond closely to changes inferred by S-gene target failures (SGTF) in community-based diagnostic PCR testing. Third, we examine growth trends in SGTF and non-SGTF case numbers at local area level across England, and show that the VOC has higher transmissibility than non-VOC lineages, even if the VOC has a different latent period or generation time. Available SGTF data indicate a shift in the age composition of reported cases, with a larger share of under 20 year olds among reported VOC than non-VOC cases. Fourth, we assess the association of VOC frequency with independent estimates of the overall SARS-CoV-2 reproduction number through time. Finally, we fit a semi-mechanistic model directly to local VOC and non-VOC case incidence to estimate the reproduction numbers over time for each. There is a consensus among all analyses that the VOC has a substantial transmission advantage, with the estimated difference in reproduction numbers between VOC and non-VOC ranging between 0.4 and 0.7, and the ratio of reproduction numbers varying between 1.4 and 1.8. We note that these estimates of transmission advantage apply to a period where high levels of social distancing were in place in England; extrapolation to other transmission contexts therefore requires caution.

13.
Preprint in English | medRxiv | ID: ppmedrxiv-20234369

ABSTRACT

BackgroundIt is critical to understand whether infection with Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) protects from subsequent reinfection. MethodsWe investigated the incidence of SARS-CoV-2 PCR-positive results in seropositive and seronegative healthcare workers (HCWs) attending asymptomatic and symptomatic staff testing at Oxford University Hospitals, UK. Baseline antibody status was determined using anti-spike and/or anti-nucleocapsid IgG assays and staff followed for up to 30 weeks. We used Poisson regression to estimate the relative incidence of PCR-positive results and new symptomatic infection by antibody status, accounting for age, gender and changes in incidence over time. ResultsA total of 12219 HCWs participated and had anti-spike IgG measured, 11052 were followed up after negative and 1246 after positive antibody results including 79 who seroconverted during follow up. 89 PCR-confirmed symptomatic infections occurred in seronegative individuals (0.46 cases per 10,000 days at risk) and no symptomatic infections in those with anti-spike antibodies. Additionally, 76 (0.40/10,000 days at risk) anti-spike IgG seronegative individuals had PCR-positive tests in asymptomatic screening, compared to 3 (0.21/10,000 days at risk) seropositive individuals. Overall, positive baseline anti-spike antibodies were associated with lower rates of PCR-positivity (with or without symptoms) (adjusted rate ratio 0.24 [95%CI 0.08-0.76, p=0.015]). Rate ratios were similar using anti-nucleocapsid IgG alone or combined with anti-spike IgG to determine baseline status. ConclusionsPrior SARS-CoV-2 infection that generated antibody responses offered protection from reinfection for most people in the six months following infection. Further work is required to determine the long-term duration and correlates of post-infection immunity.

14.
Preprint in English | medRxiv | ID: ppmedrxiv-20201475

ABSTRACT

The COVID-19 pandemic has spread rapidly throughout the world. In the UK, the initial peak was in April 2020; in the county of Norfolk (UK) and surrounding areas, which has a stable, low-density population, over 3,200 cases were reported between March and August 2020. As part of the activities of the national COVID-19 Genomics Consortium (COG-UK) we undertook whole genome sequencing of the SARS-CoV-2 genomes present in positive clinical samples from the Norfolk region. These samples were collected by four major hospitals, multiple minor hospitals, care facilities and community organisations within Norfolk and surrounding areas. We combined clinical metadata with the sequencing data from regional SARS-CoV-2 genomes to understand the origins, genetic variation, transmission and expansion (spread) of the virus within the region and provide context nationally. Data were fed back into the national effort for pandemic management, whilst simultaneously being used to assist local outbreak analyses. Overall, 1,565 positive samples (172 per 100,000 population) from 1,376 cases were evaluated; for 140 cases between two and six samples were available providing longitudinal data. This represented 42.6% of all positive samples identified by hospital testing in the region and encompassed those with clinical need, and health and care workers and their families. 1,035 cases had genome sequences of sufficient quality to provide phylogenetic lineages. These genomes belonged to 26 distinct global lineages, indicating that there were multiple separate introductions into the region. Furthermore, 100 genetically-distinct UK lineages were detected demonstrating local evolution, at a rate of [~]2 SNPs per month, and multiple co-occurring lineages as the pandemic progressed. Our analysis: identified a sublineage associated with 6 care facilities; found no evidence of reinfection in longitudinal samples; ruled out a nosocomial outbreak; identified 16 lineages in key workers which were not in patients indicating infection control measures were effective; found the D614G spike protein mutation which is linked to increased transmissibility dominates the samples and rapidly confirmed relatedness of cases in an outbreak at a food processing facility. The large-scale genome sequencing of SARS-CoV-2-positive samples has provided valuable additional data for public health epidemiology in the Norfolk region, and will continue to help identify and untangle hidden transmission chains as the pandemic evolves. Major pointsIn Norfolk and surrounding regions O_LI100 distinct UK lineages were identified. C_LIO_LI16 UK lineages found in key workers were not observed in patients or in community care. C_LIO_LI172 genomes from SARS-CoV-2 positive samples sequenced per 100,000 population representing 42.6% of all positive cases. C_LIO_LISARS-CoV-2 genomes from 1035 cases sequenced to a high quality. C_LIO_LIOnly 5 countries, out of 103, have sequenced more SARS-CoV-2 genomes than have been sequenced in Norfolk for this paper. C_LIO_LISamples covered the entire first wave, March to August 2020. C_LIO_LIStable evolutionary rate of 2 SNPs per month. C_LIO_LID614G mutation is the dominant genotype and associated with increased transmission. C_LIO_LINo evidence of reinfection in 42 cases with longitudinal samples. C_LIO_LIWGS identified a sublineage associated with care facilities. C_LIO_LIWGS ruled out nosocomial outbreaks. C_LIO_LIRapid WGS confirmed the relatedness of cases from an outbreak at a food processing facility. C_LI

15.
Preprint in English | medRxiv | ID: ppmedrxiv-20171413

ABSTRACT

BackgroundWe investigated six London care homes experiencing a COVID-19 outbreak and found very high rates of SARS-CoV-2 infection among residents and staff. Here we report follow-up serological analysis in these care homes five weeks later. MethodsResidents and staff had a convalescent blood sample for SARS-CoV-2 antibody levels and neutralising antibodies by SARS-COV-2 RT-PCR five weeks after the primary COVID-19 outbreak investigation. ResultsOf the 518 residents and staff in the initial investigation, 208/241 (86.3%) surviving residents and 186/254 (73.2%) staff underwent serological testing. Almost all SARS-CoV-2 RT-PCR positive residents and staff were antibody positive five weeks later, whether symptomatic (residents 35/35, 100%; staff, 22/22, 100%) or asymptomatic (residents 32/33, 97.0%; staff 21/22, 95.1%). Symptomatic but SARS-CoV-2 RT-PCR negative residents and staff also had high seropositivity rates (residents 23/27, 85.2%; staff 18/21, 85.7%), as did asymptomatic RT-PCR negative individuals (residents 62/92, 67.3%; staff 95/143, 66.4%). Neutralising antibody was present in 118/132 (89.4%) seropositive individuals and was not associated with age or symptoms. Ten residents (10/108, 9.3%) remained RT-PCR positive, but with lower RT-PCR cycle threshold values; all 7 tested were seropositive. New infections were detected in three residents and one staff member. ConclusionsRT-PCR testing for SARS-CoV-2 significantly underestimates the true extent of an outbreak in institutional settings. Elderly frail residents and younger healthier staff were equally able to mount robust and neutralizing antibody responses to SARS-CoV-2. More than two-thirds of residents and staff members had detectable antibodies against SARS-CoV-2 irrespective of their nasal swab RT-PCR positivity or symptoms status.

16.
Preprint in English | medRxiv | ID: ppmedrxiv-20128876

ABSTRACT

BackgroundSignificant nosocomial transmission of SARS-CoV-2 has been demonstrated. Understanding the prevalence of SARS-CoV-2 carriage amongst HCWs at work is necessary to inform the development of HCW screening programmes to control nosocomial spread. MethodsCross-sectional snapshot survey from April-May 2020; HCWs recruited from six UK hospitals. Participants self-completed a health questionnaire and underwent a combined viral nose and throat swab, tested by Polymerase Chain Reaction (PCR) for SARS-CoV-2 with viral culture on majority of positive samples. FindingsPoint prevalence of SARS-CoV-2 carriage across the sites was 2{middle dot}0% (23/1152 participants), median cycle threshold value 35{middle dot}70 (IQR:32{middle dot}42-37{middle dot}57). 17 were previously symptomatic, two currently symptomatic (isolated anosmia and sore throat); the remainder declared no prior or current symptoms. Symptoms in the past month were associated with threefold increased odds of testing positive (aOR 3{middle dot}46, 95%CI 1{middle dot}38-8{middle dot}67; p=0{middle dot}008). SARS-CoV-2 virus was isolated from only one (5%) of nineteen cultured samples. A large proportion (39%) of participants reported symptoms in the past month. InterpretationThe point-prevalence is similar to previous estimates for HCWs in April 2020, though a magnitude higher than in the general population. Based upon interpretation of symptom history and testing results including viral culture, the majority of those testing positive were unlikely to be infectious at time of sampling. Development of screening programmes must balance the potential to identify additional cases based upon likely prevalence, expanding the symptoms list to encourage HCW testing, with resource implications and risks of excluding those unlikely to be infectious with positive tests. FundingPublic Health England. Word CountO_ST_ABSResearch in contextC_ST_ABSEvidence before this studyA search of PubMed was performed on 29th April 2020 to identify other major works in this field, using the search terms ("novel coronavirus" OR "SARS-CoV-2" OR "COVID-19" OR "coronavirus") AND ("workers" OR "staff") AND ("testing" OR "screening") from 31st December 2019 onwards with no other limits. This search was updated on 10th May 2020, and in addition reference lists were checked and pre-print papers were shared with us through professional networks. We found three papers commenting on prevalence of asymptomatic/pauci-symptomatic SARS-CoV-2 infection in healthcare workers, with prevalence estimates ranging from 1{middle dot}1 to 8%. One of these studies explored previous symptoms in depth, though this was based upon a retrospective questionnaire and thus subject to recall bias. None of these studies explored exposures to the SARS-CoV-2 virus, commented on whether participants had been tested prior to the start of the study, or broke down results by staff role. Only one reported on estimated viral load (as inferred from cycle threshold [Ct] value), and none reported attempting viral culture. Added value of this studyThis is the first published study of which we are aware that has been conducted across multiple sites in England and is therefore potentially more representative of the overall prevalence of SARS-CoV-2 infectivity amongst HCWs in the workplace. We explored symptoms in the preceding month in more depth than previous studies and in addition asked about previous test results and various exposures, also not commented on in other studies. Additionally, we attempted to isolate virus from some PCR-positive samples to look for evidence of infectious virus. Implications of all the available evidenceAuthors of previous studies have proposed that screening asymptomatic HCWs for SARS-CoV-2 RNA may be beneficial, in addition to screening symptomatic HCWs. Our findings suggest that when prevalence of COVID-19 is very low, routine and repeated screening would be unlikely to have significant value, especially given the majority of participants testing positive in this study were unlikely to be infectious. However, in situations where prevalence levels are high in a particular population or setting, for example in a hospital outbreak, widening the case definition, or screening all HCWs irrespective of symptoms, may be of benefit.

17.
Preprint in English | medRxiv | ID: ppmedrxiv-20109017

ABSTRACT

COVID-19 point prevalence PCR community testing allows disease burden estimation. In a sample of London residents, point prevalence decreased from 2.2% (95%CI 1.4;3.5) in early April (reflecting infection around lockdown implementation) to 0.2% (95%CI 0.03-1.6) in early May (reflecting infection 3-5 weeks into lockdown). Extrapolation from reports of confirmed cases suggest that 5-7.6% of total infections were confirmed by testing during this period. These data complement seroprevalence surveys improving the understanding of transmission in London.

SELECTION OF CITATIONS
SEARCH DETAIL