Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Clin Nutr ; 2021 Jun 07.
Article in English | MEDLINE | ID: covidwho-1260691

ABSTRACT

BACKGROUND: About 10-20% of patients with Coronavirus disease 2019 (COVID-19) infection progressed to severe illness within a week or so after initially diagnosed as mild infection. Identification of this subgroup of patients was crucial for early aggressive intervention to improve survival. The purpose of this study was to evaluate whether computer tomography (CT) - derived measurements of body composition such as myosteatosis indicating fat deposition inside the muscles could be used to predict the risk of transition to severe illness in patients with initial diagnosis of mild COVID-19 infection. METHODS: Patients with laboratory-confirmed COVID-19 infection presenting initially as having the mild common-subtype illness were retrospectively recruited between January 21, 2020 and February 19, 2020. CT-derived body composition measurements were obtained from the initial chest CT images at the level of the twelfth thoracic vertebra (T12) and were used to build models to predict the risk of transition. A myosteatosis nomogram was constructed using multivariate logistic regression incorporating both clinical variables and myosteatosis measurements. The performance of the prediction models was assessed by receiver operating characteristic (ROC) curve including the area under the curve (AUC). The performance of the nomogram was evaluated by discrimination, calibration curve, and decision curve. RESULTS: A total of 234 patients were included in this study. Thirty-one of the enrolled patients transitioned to severe illness. Myosteatosis measurements including SM-RA (skeletal muscle radiation attenuation) and SMFI (skeletal muscle fat index) score fitted with SMFI, age and gender, were significantly associated with risk of transition for both the training and validation cohorts (P < 0.01). The nomogram combining the SM-RA, SMFI score and clinical model improved prediction for the transition risk with an AUC of 0.85 [95% CI, 0.75 to 0.95] for the training cohort and 0.84 [95% CI, 0.71 to 0.97] for the validation cohort, as compared to the nomogram of the clinical model with AUC of 0.75 and 0.74 for the training and validation cohorts respectively. Favorable clinical utility was observed using decision curve analysis. CONCLUSION: We found CT-derived measurements of thoracic myosteatosis to be associated with higher risk of transition to severe illness in patients affected by COVID-19 who presented initially as having the mild common-subtype infection. Our study showed the relevance of skeletal muscle examination in the overall assessment of disease progression and prognosis of patients with COVID-19 infection.

2.
Eur Radiol ; 31(10): 7925-7935, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1184663

ABSTRACT

OBJECTIVES: To develop and validate a machine learning model for the prediction of adverse outcomes in hospitalized patients with COVID-19. METHODS: We included 424 patients with non-severe COVID-19 on admission from January 17, 2020, to February 17, 2020, in the primary cohort of this retrospective multicenter study. The extent of lung involvement was quantified on chest CT images by a deep learning-based framework. The composite endpoint was the occurrence of severe or critical COVID-19 or death during hospitalization. The optimal machine learning classifier and feature subset were selected for model construction. The performance was further tested in an external validation cohort consisting of 98 patients. RESULTS: There was no significant difference in the prevalence of adverse outcomes (8.7% vs. 8.2%, p = 0.858) between the primary and validation cohorts. The machine learning method extreme gradient boosting (XGBoost) and optimal feature subset including lactic dehydrogenase (LDH), presence of comorbidity, CT lesion ratio (lesion%), and hypersensitive cardiac troponin I (hs-cTnI) were selected for model construction. The XGBoost classifier based on the optimal feature subset performed well for the prediction of developing adverse outcomes in the primary and validation cohorts, with AUCs of 0.959 (95% confidence interval [CI]: 0.936-0.976) and 0.953 (95% CI: 0.891-0.986), respectively. Furthermore, the XGBoost classifier also showed clinical usefulness. CONCLUSIONS: We presented a machine learning model that could be effectively used as a predictor of adverse outcomes in hospitalized patients with COVID-19, opening up the possibility for patient stratification and treatment allocation. KEY POINTS: • Developing an individually prognostic model for COVID-19 has the potential to allow efficient allocation of medical resources. • We proposed a deep learning-based framework for accurate lung involvement quantification on chest CT images. • Machine learning based on clinical and CT variables can facilitate the prediction of adverse outcomes of COVID-19.


Subject(s)
COVID-19 , Humans , Machine Learning , Retrospective Studies , SARS-CoV-2 , Tomography, X-Ray Computed
4.
Aging Dis ; 11(5): 1069-1081, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-814820

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a global pandemic associated with a high mortality. Our study aimed to determine the clinical risk factors associated with disease progression and prolonged viral shedding in patients with COVID-19. Consecutive 564 hospitalized patients with confirmed COVID-19 between January 17, 2020 and February 28, 2020 were included in this multicenter, retrospective study. The effects of clinical factors on disease progression and prolonged viral shedding were analyzed using logistic regression and Cox regression analyses. 69 patients (12.2%) developed severe or critical pneumonia, with a higher incidence in the elderly and in individuals with underlying comorbidities, fever, dyspnea, and laboratory and imaging abnormalities at admission. Multivariate logistic regression analysis indicated that older age (odds ratio [OR], 1.04; 95% confidence interval [CI], 1.02-1.06), hypertension without receiving angiotensinogen converting enzyme inhibitors or angiotensin receptor blockers (ACEI/ARB) therapy (OR, 2.29; 95% CI, 1.14-4.59), and chronic obstructive pulmonary disease (OR, 7.55; 95% CI, 2.44-23.39) were independent risk factors for progression to severe or critical pneumonia. Hypertensive patients without receiving ACEI/ARB therapy showed higher lactate dehydrogenase levels and computed tomography (CT) lung scores at about 3 days after admission than those on ACEI/ARB therapy. Multivariate Cox regression analysis revealed that male gender (hazard ratio [HR], 1.22; 95% CI, 1.02-1.46), receiving lopinavir/ritonavir treatment within 7 days from illness onset (HR, 0.75; 95% CI, 0.63-0.90), and receiving systemic glucocorticoid therapy (HR, 1.79; 95% CI, 1.46-2.21) were independent factors associated with prolonged viral shedding. Our findings presented several potential clinical factors associated with developing severe or critical pneumonia and prolonged viral shedding, which may provide a rationale for clinicians in medical resource allocation and early intervention.

6.
Preprint in English | bioRxiv | ID: ppbiorxiv-267716

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) becomes a tremendous threat to global health. Although vaccines against the virus are under development, the antigen epitopes on the virus and their immunogenicity are poorly understood. Here, we simulated the three-dimensional structures of SARS-CoV-2 proteins with high performance computer, predicted the B cell epitopes on spike (S), envelope (E), membrane (M), and nucleocapsid (N) proteins of SARS-CoV-2 using structure-based approaches, and then validated the epitope immunogenicity by immunizing mice. Almost all 33 predicted epitopes effectively induced antibody production, six of which were immunodominant epitopes in patients identified via the binding of epitopes with the sera from domestic and imported COVID-19 patients, and 23 were conserved within SARS-CoV-2, SARS-CoV and bat coronavirus RaTG13. We also found that the immunodominant epitopes of domestic SARS-CoV-2 were different from that of the imported, which may be caused by the mutations on S (G614D) and N proteins. Importantly, we validated that eight epitopes on S protein elicited neutralizing antibodies that blocked the cell entry of both D614 and G614 pseudo-virus of SARS-CoV-2, three and nine epitopes induced D614 or G614 neutralizing antibodies, respectively. Our present study shed light on the immunodominance, neutralization, and conserved epitopes on SARS-CoV-2 which are potently used for the diagnosis, virus classification and the vaccine design tackling inefficiency, virus mutation and different species of coronaviruses.

7.
Radiology ; 296(3): E156-E165, 2020 09.
Article in English | MEDLINE | ID: covidwho-729427

ABSTRACT

Background Coronavirus disease 2019 (COVID-19) and pneumonia of other diseases share similar CT characteristics, which contributes to the challenges in differentiating them with high accuracy. Purpose To establish and evaluate an artificial intelligence (AI) system for differentiating COVID-19 and other pneumonia at chest CT and assessing radiologist performance without and with AI assistance. Materials and Methods A total of 521 patients with positive reverse transcription polymerase chain reaction results for COVID-19 and abnormal chest CT findings were retrospectively identified from 10 hospitals from January 2020 to April 2020. A total of 665 patients with non-COVID-19 pneumonia and definite evidence of pneumonia at chest CT were retrospectively selected from three hospitals between 2017 and 2019. To classify COVID-19 versus other pneumonia for each patient, abnormal CT slices were input into the EfficientNet B4 deep neural network architecture after lung segmentation, followed by a two-layer fully connected neural network to pool slices together. The final cohort of 1186 patients (132 583 CT slices) was divided into training, validation, and test sets in a 7:2:1 and equal ratio. Independent testing was performed by evaluating model performance in separate hospitals. Studies were blindly reviewed by six radiologists without and then with AI assistance. Results The final model achieved a test accuracy of 96% (95% confidence interval [CI]: 90%, 98%), a sensitivity of 95% (95% CI: 83%, 100%), and a specificity of 96% (95% CI: 88%, 99%) with area under the receiver operating characteristic curve of 0.95 and area under the precision-recall curve of 0.90. On independent testing, this model achieved an accuracy of 87% (95% CI: 82%, 90%), a sensitivity of 89% (95% CI: 81%, 94%), and a specificity of 86% (95% CI: 80%, 90%) with area under the receiver operating characteristic curve of 0.90 and area under the precision-recall curve of 0.87. Assisted by the probabilities of the model, the radiologists achieved a higher average test accuracy (90% vs 85%, Δ = 5, P < .001), sensitivity (88% vs 79%, Δ = 9, P < .001), and specificity (91% vs 88%, Δ = 3, P = .001). Conclusion Artificial intelligence assistance improved radiologists' performance in distinguishing coronavirus disease 2019 pneumonia from non-coronavirus disease 2019 pneumonia at chest CT. © RSNA, 2020 Online supplemental material is available for this article.


Subject(s)
Artificial Intelligence , Coronavirus Infections/diagnostic imaging , Pneumonia, Viral/diagnostic imaging , Radiologists , Tomography, X-Ray Computed/methods , Adolescent , Adult , Aged , Aged, 80 and over , Betacoronavirus , COVID-19 , Child , Child, Preschool , China , Diagnosis, Differential , Female , Humans , Infant , Infant, Newborn , Lung/diagnostic imaging , Male , Middle Aged , Pandemics , Philadelphia , Pneumonia/diagnostic imaging , Radiography, Thoracic , Radiologists/standards , Radiologists/statistics & numerical data , Retrospective Studies , Rhode Island , SARS-CoV-2 , Sensitivity and Specificity , Young Adult
8.
Radiology ; 296(2): E46-E54, 2020 08.
Article in English | MEDLINE | ID: covidwho-697192

ABSTRACT

Background Despite its high sensitivity in diagnosing coronavirus disease 2019 (COVID-19) in a screening population, the chest CT appearance of COVID-19 pneumonia is thought to be nonspecific. Purpose To assess the performance of radiologists in the United States and China in differentiating COVID-19 from viral pneumonia at chest CT. Materials and Methods In this study, 219 patients with positive COVID-19, as determined with reverse-transcription polymerase chain reaction (RT-PCR) and abnormal chest CT findings, were retrospectively identified from seven Chinese hospitals in Hunan Province, China, from January 6 to February 20, 2020. Two hundred five patients with positive respiratory pathogen panel results for viral pneumonia and CT findings consistent with or highly suspicious for pneumonia, according to original radiologic interpretation within 7 days of each other, were identified from Rhode Island Hospital in Providence, RI. Three radiologists from China reviewed all chest CT scans (n = 424) blinded to RT-PCR findings to differentiate COVID-19 from viral pneumonia. A sample of 58 age-matched patients was randomly selected and evaluated by four radiologists from the United States in a similar fashion. Different CT features were recorded and compared between the two groups. Results For all chest CT scans (n = 424), the accuracy of the three radiologists from China in differentiating COVID-19 from non-COVID-19 viral pneumonia was 83% (350 of 424), 80% (338 of 424), and 60% (255 of 424). In the randomly selected sample (n = 58), the sensitivities of three radiologists from China and four radiologists from the United States were 80%, 67%, 97%, 93%, 83%, 73%, and 70%, respectively. The corresponding specificities of the same readers were 100%, 93%, 7%, 100%, 93%, 93%, and 100%, respectively. Compared with non-COVID-19 pneumonia, COVID-19 pneumonia was more likely to have a peripheral distribution (80% vs 57%, P < .001), ground-glass opacity (91% vs 68%, P < .001), fine reticular opacity (56% vs 22%, P < .001), and vascular thickening (59% vs 22%, P < .001), but it was less likely to have a central and peripheral distribution (14% vs 35%, P < .001), pleural effusion (4% vs 39%, P < .001), or lymphadenopathy (3% vs 10%, P = .002). Conclusion Radiologists in China and in the United States distinguished coronavirus disease 2019 from viral pneumonia at chest CT with moderate to high accuracy. © RSNA, 2020 Online supplemental material is available for this article. A translation of this abstract in Farsi is available in the supplement. ترجمه چکیده این مقاله به فارسی، در ضمیمه موجود است.


Subject(s)
Betacoronavirus , Clinical Competence , Coronavirus Infections/diagnostic imaging , Pneumonia, Viral/diagnostic imaging , Radiologists/standards , Adult , Aged , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques/methods , Coronavirus Infections/diagnosis , Coronavirus Infections/pathology , Diagnosis, Differential , Female , Humans , Male , Middle Aged , Pandemics , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , Predictive Value of Tests , Retrospective Studies , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2 , Sensitivity and Specificity , Tomography, X-Ray Computed/methods
SELECTION OF CITATIONS
SEARCH DETAIL