Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Document Type
Type of study
Language
Year range
2.
J Neurovirol ; 27(5): 797-801, 2021 10.
Article in English | MEDLINE | ID: covidwho-1432669

ABSTRACT

Guillain-Barré syndrome (GBS) is an ascending demyelinating polyneuropathy often associated with recent infection. Miller Fisher syndrome represents a variant with predominant facial and cranial nerve involvement, although Miller Fisher and Guillain-Barré overlap syndromes can occur. Guillain-Barré spectrum syndromes have been thought to be rare among solid organ transplant recipients. We describe an immunocompromised patient with a liver transplant who presented with ophthalmoplegia and bulbar deficits. His symptoms rapidly progressed to a state of descending paralysis involving the diaphragm; he then developed acute respiratory failure and eventually developed quadriparesis. Electromyography and a nerve conduction study demonstrated a severe sensorimotor axonal polyneuropathy consistent with Miller Fisher variant Guillain-Barré syndrome. Despite several negative nasopharyngeal swabs for COVID-19 polymerase chain reaction, a serology for SARS-CoV-2 IgG was positive. He was diagnosed with Miller Fisher-Guillain-Barré overlap syndrome with rapid recovery following treatment with plasma exchange. Although Guillain-Barré is a rare complication in solid organ transplant recipients, this case highlights the importance of rapid diagnosis and treatment of neurologic complications in transplant patients. Furthermore, it demonstrates a possible case of neurological complications from COVID-19 infection.


Subject(s)
COVID-19/complications , Guillain-Barre Syndrome/immunology , Guillain-Barre Syndrome/virology , Miller Fisher Syndrome/immunology , Miller Fisher Syndrome/virology , Guillain-Barre Syndrome/therapy , Humans , Immunocompromised Host , Liver Transplantation , Male , Middle Aged , Miller Fisher Syndrome/therapy , Plasmapheresis , SARS-CoV-2 , Transplant Recipients
3.
Clin Infect Dis ; 2021 May 14.
Article in English | MEDLINE | ID: covidwho-1228461

ABSTRACT

BACKGROUND: Increased inflammation has been well defined in COVID-19, while definitive pathways driving severe forms of this disease remain uncertain. Neutrophils are known to contribute to immunopathology in infections, inflammatory diseases and acute respiratory distress syndrome (ARDS), a primary cause of morbidity and mortality in COVID-19. Changes in neutrophil function in COVID-19 may give insight into disease pathogenesis and identify therapeutic targets. METHODS: Blood was obtained serially from critically ill COVID-19 patients for eleven days. Neutrophil extracellular trap formation (NETosis), oxidative burst, phagocytosis and cytokine levels were assessed. Lung tissue was obtained immediately post-mortem for immunostaining. Pubmed searches for neutrophils, lung and COVID-19 yielded ten peer-reviewed research articles in English. RESULTS: Elevations in neutrophil-associated cytokines IL-8 and IL-6, and general inflammatory cytokines IP-10, GM-CSF, IL-1b, IL-10 and TNF, were identified both at first measurement and across hospitalization (p<0.0001). COVID neutrophils had exaggerated oxidative burst (p<0.0001), NETosis (p<0.0001) and phagocytosis (p<0.0001) relative to controls. Increased NETosis correlated with leukocytosis and neutrophilia, and neutrophils and NETs were identified within airways and alveoli in lung parenchyma of 40% of SARS-CoV-2 infected lungs available for examination (2 out of 5). While elevations in IL-8 and ANC correlated with disease severity, plasma IL-8 levels alone correlated with death. CONCLUSIONS: Literature to date demonstrates compelling evidence of increased neutrophils in the circulation and lungs of COVID-19 patients. importantly, neutrophil quantity and activation correlates with severity of disease. Similarly, our data shows that circulating neutrophils in COVID-19 exhibit an activated phenotype with enhanced NETosis and oxidative burst.

SELECTION OF CITATIONS
SEARCH DETAIL
...