Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
SSRN; 2022.
Preprint in English | SSRN | ID: ppcovidwho-333333

ABSTRACT

Background: Work-related exposures play an important role in SARS-CoV-2 transmission, yet few studies have measured the risk of COVID-19 across occupations and industries. Methods: During September 2020 – May 2021, the Wisconsin Department of Health Services collected occupation and industry data as part of routine COVID-19 case investigations. Adults aged 18-64 years with confirmed or probable COVID-19 in Wisconsin were assigned standardized occupation and industry codes. Cumulative incidence rates were weighted for non-response and calculated using full-time equivalent (FTE) workforce denominators from the 2020 American Community Survey. Findings: An estimated 11.6% of workers (347,013 of 2.98 million) in Wisconsin, ages 18-64 years, had COVID-19 from September 2020 to May 2021. The highest incidence by occupation (per 100 full-time equivalents) occurred among personal care and services workers (22.4), healthcare practitioners and support staff (20.7), and protective services workers (20.7). High risk sub-groups included nursing assistants and personal care aides (28.8), childcare workers (25.8), food and beverage service workers (25.3), personal appearance workers (24.4), and law enforcement workers (24.1). By industry, incidence was highest in healthcare (18.6);the highest risk sub-sectors were nursing care facilities (30.5) and warehousing (28.5). Interpretation: This analysis represents one of the most complete examinations to date of COVID-19 incidence by occupation and industry. Our approach demonstrates the value of standardized occupational data collection by public health, and may be a model for improved occupational surveillance elsewhere. Workers at higher risk of SARS-CoV-2 exposure may benefit from targeted workplace COVID-19 vaccination and mitigation efforts.

2.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-316747

ABSTRACT

Wastewater surveillance for SARS-CoV-2 has garnered extensive public attention during the COVID-19 pandemic as a proposed complement to existing disease surveillance systems. Over the past year, environmental microbiology and engineering researchers have advanced methods for detection and quantification of SARS-CoV-2 viral RNA in untreated sewage and demonstrated that the trends in wastewater are correlated with trends in cases reported days to weeks later depending on the location. At the start of the pandemic, the virus was also detected in wastewater in locations prior to known cases. Despite the promise of wastewater surveillance, for these measurements to translate into useful public health tools, it is necessary to bridge the barriers between researchers and the public health responders who will ultimately use the data. Here we describe the key uses, barriers, and applicability of SARS-CoV-2 wastewater surveillance for supporting public health decisions and actions. This perspective was formed from a multidisciplinary group of environmental microbiology, engineering, wastewater, and public health experts, as well as from opinions shared during three focus group discussions with officials from ten state and local public health agencies. The key barriers to use of wastewater surveillance data identified were: (1) As a new data source, most public health agencies are not yet comfortable interpreting wastewater data;(2) Public health agencies want to see SARS-CoV-2 wastewater data in their own communities to gain confidence in its utility;(3) New institutional knowledge and increased capacity is likely needed to sustain wastewater surveillance systems;and (4) The ethics of wastewater surveillance data collection, sharing, and use are not yet established. Overall, while wastewater surveillance to assess community infections is not a new idea, by addressing these barriers, the COVID-19 pandemic may be the initiating event that turns this emerging public health tool into a sustainable nationwide surveillance system.

3.
Emerg Infect Dis ; 27(9): 1-8, 2021 09.
Article in English | MEDLINE | ID: covidwho-1369632

ABSTRACT

Wastewater surveillance for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has garnered extensive public attention during the coronavirus disease pandemic as a proposed complement to existing disease surveillance systems. Over the past year, methods for detection and quantification of SARS-CoV-2 viral RNA in untreated sewage have advanced, and concentrations in wastewater have been shown to correlate with trends in reported cases. Despite the promise of wastewater surveillance, for these measurements to translate into useful public health tools, bridging the communication and knowledge gaps between researchers and public health responders is needed. We describe the key uses, barriers, and applicability of SARS-CoV-2 wastewater surveillance for supporting public health decisions and actions, including establishing ethics consideration for monitoring. Although wastewater surveillance to assess community infections is not a new idea, the coronavirus disease pandemic might be the initiating event to make this emerging public health tool a sustainable nationwide surveillance system, provided that these barriers are addressed.


Subject(s)
COVID-19 , Public Health , Humans , Pandemics , SARS-CoV-2 , Waste Water
4.
Clin Infect Dis ; 73(Suppl 1): S45-S53, 2021 07 15.
Article in English | MEDLINE | ID: covidwho-1315688

ABSTRACT

BACKGROUND: High-frequency, rapid-turnaround severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) testing continues to be proposed as a way of efficiently identifying and mitigating transmission in congregate settings. However, 2 SARS-CoV-2 outbreaks occurred among intercollegiate university athletic programs during the fall 2020 semester, despite mandatory directly observed daily antigen testing. METHODS: During the fall 2020 semester, athletes and staff in both programs were tested daily using Quidel's Sofia SARS Antigen Fluorescent Immunoassay, with positive antigen results requiring confirmatory testing with real-time reverse-transcription polymerase chain reaction. We used genomic sequencing to investigate transmission dynamics in these 2 outbreaks. RESULTS: In the first outbreak, 32 confirmed cases occurred within a university athletics program after the index patient attended a meeting while infectious, despite a negative antigen test on the day of the meeting. Among isolates sequenced from that outbreak, 24 (92%) of 26 were closely related, suggesting sustained transmission following an initial introduction event. In the second outbreak, 12 confirmed cases occurred among athletes from 2 university programs that faced each other in an athletic competition, despite receipt of negative antigen test results on the day of the competition. Sequences from both teams were closely related and distinct from viruses circulating in the community for team 1, suggesting transmission during intercollegiate competition in the community for team 2. CONCLUSIONS: These findings suggest that antigen testing alone, even when mandated and directly observed, may not be sufficient as an intervention to prevent SARS-CoV-2 outbreaks in congregate settings, and they highlight the importance of vaccination to prevent SARS-CoV-2 outbreak in congregate settings.


Subject(s)
COVID-19 , Sports , Humans , Immunologic Tests , SARS-CoV-2 , Universities
5.
Clin Infect Dis ; 73(Suppl 1): S45-S53, 2021 07 15.
Article in English | MEDLINE | ID: covidwho-1225623

ABSTRACT

BACKGROUND: High-frequency, rapid-turnaround severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) testing continues to be proposed as a way of efficiently identifying and mitigating transmission in congregate settings. However, 2 SARS-CoV-2 outbreaks occurred among intercollegiate university athletic programs during the fall 2020 semester, despite mandatory directly observed daily antigen testing. METHODS: During the fall 2020 semester, athletes and staff in both programs were tested daily using Quidel's Sofia SARS Antigen Fluorescent Immunoassay, with positive antigen results requiring confirmatory testing with real-time reverse-transcription polymerase chain reaction. We used genomic sequencing to investigate transmission dynamics in these 2 outbreaks. RESULTS: In the first outbreak, 32 confirmed cases occurred within a university athletics program after the index patient attended a meeting while infectious, despite a negative antigen test on the day of the meeting. Among isolates sequenced from that outbreak, 24 (92%) of 26 were closely related, suggesting sustained transmission following an initial introduction event. In the second outbreak, 12 confirmed cases occurred among athletes from 2 university programs that faced each other in an athletic competition, despite receipt of negative antigen test results on the day of the competition. Sequences from both teams were closely related and distinct from viruses circulating in the community for team 1, suggesting transmission during intercollegiate competition in the community for team 2. CONCLUSIONS: These findings suggest that antigen testing alone, even when mandated and directly observed, may not be sufficient as an intervention to prevent SARS-CoV-2 outbreaks in congregate settings, and they highlight the importance of vaccination to prevent SARS-CoV-2 outbreak in congregate settings.


Subject(s)
COVID-19 , Sports , Humans , Immunologic Tests , SARS-CoV-2 , Universities
6.
MMWR Morb Mortal Wkly Rep ; 70(4): 114-117, 2021 Jan 29.
Article in English | MEDLINE | ID: covidwho-1112896

ABSTRACT

During September 3-November 16, 2020, daily confirmed cases of coronavirus disease 2019 (COVID-19) reported to the Wisconsin Department of Health Services (WDHS) increased at a rate of 24% per week, from a 7-day average of 674 (August 28-September 3) to 6,426 (November 10-16) (1). The growth rate during this interval was the highest to date in Wisconsin and among the highest in the United States during that time (1). To characterize potential sources of this increase, the investigation examined reported outbreaks in Wisconsin that occurred during March 4-November 16, 2020, with respect to their setting and number of associated COVID-19 cases.


Subject(s)
COVID-19/epidemiology , Disease Outbreaks/statistics & numerical data , Public Health Surveillance , Health Facilities/statistics & numerical data , Humans , Incidence , Laboratories , Long-Term Care , Prisons/statistics & numerical data , SARS-CoV-2/isolation & purification , Universities/statistics & numerical data , Wisconsin/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL