Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Trends Microbiol ; 30(10): 948-958, 2022 10.
Article in English | MEDLINE | ID: covidwho-2036564

ABSTRACT

'Infodemia' is a portmanteau between 'information' and 'epidemics', referring to wide and rapid accumulation and dissemination of information, misinformation, and disinformation about a given subject, such as a disease. As facts, rumors and fears mix and disperse, the misinfodemic creates loud background noise, preventing the general public from discerning between accurate and false information. We compared and contrasted key elements of the AIDS and COVID-19 misinfodemics, to identify common features, and, based on experience with the AIDS pandemic, recommend actions to control and reverse the SARS-CoV-2 misinfodemic that contributed to erode the trust between the public and scientists and governments and has created barriers to control of COVID-19. As pandemics emerge and evolve, providing robust responses to future misinfodemics must be a priority for society and public health.


Subject(s)
Acquired Immunodeficiency Syndrome , COVID-19 , COVID-19/epidemiology , Communication , Humans , Pandemics/prevention & control , Public Health , SARS-CoV-2
2.
Nat Commun ; 13(1): 4696, 2022 08 18.
Article in English | MEDLINE | ID: covidwho-1991586

ABSTRACT

Mutations in the spike glycoproteins of SARS-CoV-2 variants of concern have independently been shown to enhance aspects of spike protein fitness. Here, we describe an antibody fragment (VH ab6) that neutralizes all major variants including the recently emerged BA.1 and BA.2 Omicron subvariants, with a unique mode of binding revealed by cryo-EM studies. Further, we provide a comparative analysis of the mutational effects within previously emerged variant spikes and identify the structural role of mutations within the NTD and RBD in evading antibody neutralization. Our analysis shows that the highly mutated Gamma N-terminal domain exhibits considerable structural rearrangements, partially explaining its decreased neutralization by convalescent sera. Our results provide mechanistic insights into the structural, functional, and antigenic consequences of SARS-CoV-2 spike mutations and highlight a spike protein vulnerability that may be exploited to achieve broad protection against circulating variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/therapy , Epitopes/genetics , Humans , Immunization, Passive , Neutralization Tests , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
3.
Annu Rev Med ; 2022 Jul 18.
Article in English | MEDLINE | ID: covidwho-1950319

ABSTRACT

The COVID-19 pandemic has been accompanied by SARS-CoV-2 evolution and emergence of viral variants that have far exceeded initial expectations. Five major variants of concern (Alpha, Beta, Gamma, Delta, and Omicron) have emerged, each having both unique and overlapping amino acid substitutions that have affected transmissibility, disease severity, and susceptibility to natural or vaccine-induced immune responses and monoclonal antibodies. Several of the more recent variants appear to have evolved properties of immune evasion, particularly in cases of prolonged infection. Tracking of existing variants and surveillance for new variants are critical for an effective pandemic response. Expected final online publication date for the Annual Review of Medicine, Volume 74 is January 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

4.
iScience ; 25(8): 104798, 2022 Aug 19.
Article in English | MEDLINE | ID: covidwho-1936592

ABSTRACT

The emergence of SARS-CoV-2 variants of concern (VOCs) requires the development of next-generation biologics with high neutralization breadth. Here, we characterized a human VH domain, F6, which we generated by sequentially panning large phage-displayed VH libraries against receptor binding domains (RBDs) containing VOC mutations. Cryo-EM analyses reveal that F6 has a unique binding mode that spans a broad surface of the RBD and involves the antibody framework region. Attachment of an Fc region to a fusion of F6 and ab8, a previously characterized VH domain, resulted in a construct (F6-ab8-Fc) that broadly and potently neutralized VOCs including Omicron. Additionally, prophylactic treatment using F6-ab8-Fc reduced live Beta (B.1.351) variant viral titers in the lungs of a mouse model. Our results provide a new potential therapeutic against SARS-CoV-2 variants including Omicron and highlight a vulnerable epitope within the spike that may be exploited to achieve broad protection against circulating variants.

5.
Clin Infect Dis ; 75(8): 1462-1466, 2022 Oct 12.
Article in English | MEDLINE | ID: covidwho-1895806

ABSTRACT

Coronavirus disease 2019 (COVID-19) in pregnancy is associated with excess maternal and infant morbidity and mortality in both African and higher-resource settings. Furthermore, mounting evidence demonstrates the safety and efficacy of COVID-19 vaccination for pregnant women and infants. However, national guidelines in many African countries are equivocal or lack recommendations on COVID-19 vaccine in pregnancy. We summarize key data on COVID-19 epidemiology and vaccination among pregnant African women to highlight major barriers to vaccination and recommend 4 interventions. First, policymakers should prioritize pregnant women for COVID-19 vaccination, with a target of 100% coverage. Second, empirically supported public health campaigns should be sustainably implemented to inform and support pregnant women and their healthcare providers in overcoming vaccine hesitancy. Third, COVID-19 vaccination for pregnant women should be expanded to include antenatal care, obstetrics/gynecology, and targeted mass vaccination campaigns. Fourth, national monitoring and evaluation of COVID-19 vaccine uptake, safety, surveillance, and prospective outcomes assessment should be conducted.


Subject(s)
COVID-19 , COVID-19/prevention & control , COVID-19 Vaccines , Female , Humans , Infant , Pregnancy , Pregnant Women , Prospective Studies , Vaccination
6.
Clin Infect Dis ; 75(1): e630-e644, 2022 08 24.
Article in English | MEDLINE | ID: covidwho-1886372

ABSTRACT

BACKGROUND: We studied humoral responses after coronavirus disease 2019 (COVID-19) vaccination across varying causes of immunodeficiency. METHODS: Prospective study of fully vaccinated immunocompromised adults (solid organ transplant [SOT], hematologic malignancy, solid cancers, autoimmune conditions, human immunodeficiency virus [HIV]) versus nonimmunocompromised healthcare workers (HCWs). The primary outcome was the proportion with a reactive test (seropositive) for immunoglobulin G to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) receptor-binding domain. Secondary outcomes were comparisons of antibody levels and their correlation with pseudovirus neutralization titers. Stepwise logistic regression was used to identify factors associated with seropositivity. RESULTS: A total of 1271 participants enrolled: 1099 immunocompromised and 172 HCW. Compared with HCW (92.4% seropositive), seropositivity was lower among participants with SOT (30.7%), hematological malignancies (50.0%), autoimmune conditions (79.1%), solid tumors (78.7%), and HIV (79.8%) (P < .01). Factors associated with poor seropositivity included age, greater immunosuppression, time since vaccination, anti-CD20 monoclonal antibodies, and vaccination with BNT162b2 (Pfizer) or adenovirus vector vaccines versus messenger RNA (mRNA)-1273 (Moderna). mRNA-1273 was associated with higher antibody levels than BNT162b2 or adenovirus vector vaccines after adjusting for time since vaccination, age, and underlying condition. Antibody levels were strongly correlated with pseudovirus neutralization titers (Spearman r = 0.89, P < .0001), but in seropositive participants with intermediate antibody levels, neutralization titers were significantly lower in immunocompromised individuals versus HCW. CONCLUSIONS: Antibody responses to COVID-19 vaccines were lowest among SOT and anti-CD20 monoclonal recipients, and recipients of vaccines other than mRNA-1273. Among those with intermediate antibody levels, pseudovirus neutralization titers were lower in immunocompromised patients than HCWs. Additional SARS-CoV-2 preventive approaches are needed for immunocompromised persons, which may need to be tailored to the cause of immunodeficiency.


Subject(s)
COVID-19 , HIV Infections , Adult , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , HIV Infections/complications , Humans , Immunocompromised Host , Prospective Studies , SARS-CoV-2 , Vaccination
7.
J Infect Dis ; 2022 May 02.
Article in English | MEDLINE | ID: covidwho-1831179

ABSTRACT

Plasma SARS-CoV-2 viral RNA (vRNA) levels are predictive of COVID-19 outcomes in hospitalized patients, but whether plasma vRNA reflects lower respiratory tract (LRT) vRNA levels is unclear. We compared plasma and LRT vRNA levels in serially collected samples from mechanically ventilated patients with COVID-19. LRT and plasma vRNA levels were strongly correlated at first sampling (n=33, r=0.83, p<10-9) and then declined in parallel in available serial samples except in non-survivors who exhibited delayed vRNA clearance in LRT samples. Plasma vRNA measurement may offer a practical surrogate of LRT vRNA burden in critically ill patients, especially early after ICU admission.

8.
Clin Infect Dis ; 74(9): 1525-1533, 2022 05 03.
Article in English | MEDLINE | ID: covidwho-1831036

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral RNA (vRNA) is detected in the bloodstream of some patients with coronavirus disease 2019 (COVID-19), but it is not clear whether this RNAemia reflects viremia (ie, virus particles) and how it relates to host immune responses and outcomes. METHODS: SARS-CoV-2 vRNA was quantified in plasma samples from observational cohorts of 51 COVID-19 patients including 9 outpatients, 19 hospitalized (non-intensive care unit [ICU]), and 23 ICU patients. vRNA levels were compared with cross-sectional indices of COVID-19 severity and prospective clinical outcomes. We used multiple imaging methods to visualize virions in plasma. RESULTS: SARS-CoV-2 vRNA was detected in plasma of 100%, 52.6%, and 11.1% of ICU, non-ICU, and outpatients, respectively. Virions were detected in plasma pellets using electron tomography and immunostaining. Plasma vRNA levels were significantly higher in ICU > non-ICU > outpatients (P < .0001); for inpatients, plasma vRNA levels were strongly associated with higher World Health Organization (WHO) score at admission (P = .01), maximum WHO score (P = .002), and discharge disposition (P = .004). A plasma vRNA level >6000 copies/mL was strongly associated with mortality (hazard ratio, 10.7). Levels of vRNA were significantly associated with several inflammatory biomarkers (P < .01) but not with plasma neutralizing antibody titers (P = .8). CONCLUSIONS: Visualization of virus particles in plasma indicates that SARS-CoV-2 RNAemia is due, at least in part, to viremia. The levels of SARS-CoV-2 RNAemia correlate strongly with disease severity, patient outcome, and specific inflammatory biomarkers but not with neutralizing antibody titers.


Subject(s)
COVID-19 , Antibodies, Neutralizing , Biomarkers , COVID-19/diagnosis , Cross-Sectional Studies , Humans , Prospective Studies , RNA, Viral , SARS-CoV-2 , Viremia
9.
Front Immunol ; 13: 869825, 2022.
Article in English | MEDLINE | ID: covidwho-1809406

ABSTRACT

Phage display is a well-established technology for in vitro selection of monoclonal antibodies (mAb), and more than 12 antibodies isolated from phage displayed libraries of different formats have been approved for therapy. We have constructed a large size (10^11) human antibody VH domain library based on thermo-stable, aggregation-resistant scaffolds. This diversity was obtained by grafting naturally occurring CDR2s and CDR3s from healthy donors with optimized primers into the VH library. This phage-displayed library was used for bio-panning against various antigens. So far, panels of binders have been isolated against different viral and tumor targets, including the SARS-CoV-2 RBD, HIV-1 ENV protein, mesothelin and FLT3. In the present study, we discuss domain library construction, characterize novel VH binders against human CD22 and PD-L1, and define our design process for antibody domain drug conjugation (DDC) as tumoricidal reagents. Our study provides examples for the potential applications of antibody domains derived from library screens in therapeutics and provides key information for large size human antibody domain library construction.


Subject(s)
COVID-19 , Immunoglobulin Heavy Chains , Antibodies, Monoclonal , B7-H1 Antigen , Humans , Peptide Library , SARS-CoV-2 , Sialic Acid Binding Ig-like Lectin 2/metabolism
10.
JAMA Pediatr ; 176(3): e216436, 2022 Mar 01.
Article in English | MEDLINE | ID: covidwho-1635814

ABSTRACT

IMPORTANCE: Little is known about COVID-19 outcomes among children and adolescents in sub-Saharan Africa, where preexisting comorbidities are prevalent. OBJECTIVE: To assess the clinical outcomes and factors associated with outcomes among children and adolescents hospitalized with COVID-19 in 6 countries in sub-Saharan Africa. DESIGN, SETTING, AND PARTICIPANTS: This cohort study was a retrospective record review of data from 25 hospitals in the Democratic Republic of the Congo, Ghana, Kenya, Nigeria, South Africa, and Uganda from March 1 to December 31, 2020, and included 469 hospitalized patients aged 0 to 19 years with SARS-CoV-2 infection. EXPOSURES: Age, sex, preexisting comorbidities, and region of residence. MAIN OUTCOMES AND MEASURES: An ordinal primary outcome scale was used comprising 5 categories: (1) hospitalization without oxygen supplementation, (2) hospitalization with oxygen supplementation, (3) ICU admission, (4) invasive mechanical ventilation, and (5) death. The secondary outcome was length of hospital stay. RESULTS: Among 469 hospitalized children and adolescents, the median age was 5.9 years (IQR, 1.6-11.1 years); 245 patients (52.4%) were male, and 115 (24.5%) had comorbidities. A total of 39 patients (8.3%) were from central Africa, 172 (36.7%) from eastern Africa, 208 (44.3%) from southern Africa, and 50 (10.7%) from western Africa. Eighteen patients had suspected (n = 6) or confirmed (n = 12) multisystem inflammatory syndrome in children. Thirty-nine patients (8.3%) died, including 22 of 69 patients (31.9%) who required intensive care unit admission and 4 of 18 patients (22.2%) with suspected or confirmed multisystem inflammatory syndrome in children. Among 468 patients, 418 (89.3%) were discharged, and 16 (3.4%) remained hospitalized. The likelihood of outcomes with higher vs lower severity among children younger than 1 year expressed as adjusted odds ratio (aOR) was 4.89 (95% CI, 1.44-16.61) times higher than that of adolescents aged 15 to 19 years. The presence of hypertension (aOR, 5.91; 95% CI, 1.89-18.50), chronic lung disease (aOR, 2.97; 95% CI, 1.65-5.37), or a hematological disorder (aOR, 3.10; 95% CI, 1.04-9.24) was associated with severe outcomes. Age younger than 1 year (adjusted subdistribution hazard ratio [asHR], 0.48; 95% CI, 0.27-0.87), the presence of 1 comorbidity (asHR, 0.54; 95% CI, 0.40-0.72), and the presence of 2 or more comorbidities (asHR, 0.26; 95% CI, 0.18-0.38) were associated with reduced rates of hospital discharge. CONCLUSIONS AND RELEVANCE: In this cohort study of children and adolescents hospitalized with COVID-19 in sub-Saharan Africa, high rates of morbidity and mortality were observed among infants and patients with noncommunicable disease comorbidities, suggesting that COVID-19 vaccination and therapeutic interventions are needed for young populations in this region.


Subject(s)
COVID-19/therapy , Child, Hospitalized , Outcome Assessment, Health Care , Pneumonia, Viral/therapy , Adolescent , Africa South of the Sahara/epidemiology , COVID-19/epidemiology , COVID-19/mortality , Child , Child, Preschool , Female , Humans , Infant , Length of Stay/statistics & numerical data , Male , Oxygen Inhalation Therapy , Pandemics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/mortality , Pneumonia, Viral/virology , Respiration, Artificial , SARS-CoV-2
12.
Clin Infect Dis ; 73(6): e1397-e1401, 2021 09 15.
Article in English | MEDLINE | ID: covidwho-1412539

ABSTRACT

Recent case studies have highlighted the fact that certain immunocompromised individuals are at risk for prolonged SARS-CoV-2 replication, intrahost viral evolution of multiply-mutated variants, and poor clinical outcomes. The immunologic determinants of this risk, the duration of infectiousness, and optimal treatment and prevention strategies in immunocompromised hosts are ill defined. Of additional concern is the widespread use of immunosuppressive medications to treat COVID-19, which may enhance and prolong viral replication in the context of immunodeficiency. We outline the rationale for 4 interrelated approaches to usher in an era of evidence-based medicine for optimal management of immunocompromised patients with COVID-19: multicenter pathogenesis and outcomes studies to relate the risk of severe disease to the type and degree of immunodeficiency, studies to evaluate immunologic responses to SARS-CoV-2 vaccines, studies to evaluate the efficacy of monoclonal antibodies for primary prophylaxis, and clinical trials of novel antiviral agents for the treatment of COVID-19.


Subject(s)
COVID-19 , Antiviral Agents/therapeutic use , COVID-19 Vaccines , Humans , Immunocompromised Host , SARS-CoV-2
13.
Clin Infect Dis ; 73(3): e815-e821, 2021 08 02.
Article in English | MEDLINE | ID: covidwho-1338685

ABSTRACT

A chimeric antigen receptor-modified T-cell therapy recipient developed severe coronavirus disease 2019, intractable RNAemia, and viral replication lasting >2 months. Premortem endotracheal aspirate contained >2 × 1010 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA copies/mL and infectious virus. Deep sequencing revealed multiple sequence variants consistent with intrahost virus evolution. SARS-CoV-2 humoral and cell-mediated immunity were minimal. Prolonged transmission from immunosuppressed patients is possible.


Subject(s)
COVID-19 , Receptors, Chimeric Antigen , Cell- and Tissue-Based Therapy , Humans , SARS-CoV-2 , Virus Replication
14.
J Am Med Dir Assoc ; 22(8): 1593-1598, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1267723

ABSTRACT

OBJECTIVE: COVID-19 disproportionately impacts residents in long-term care facilities. Our objective was to quantify the presence and magnitude of antibody response in vaccinated, older adult residents at assisted living, personal care, and independent living communities. DESIGN: A cross-sectional quality improvement study was conducted March 15 - April 1, 2021 in the greater Pittsburgh region. SETTING AND POPULATION: Participants were older adult residents at assisted living, personal care, and independent living communities, who received mRNA-based COVID-19 vaccine. Conditions that impair immune responses were exclusionary criteria. METHODS: Sera were collected to measure IgG anti-SARS-CoV-2 antibody level with reflex to total anti-SARS-CoV-2 immunoglobulin levels, and blinded evaluation of SARS-CoV-2 pseudovirus neutralization titers. Descriptive statistics, Pearson correlation coefficients, and multiple linear regression analysis evaluated relationships between factors potentially associated with antibody levels. Spearman correlations were calculated between antibody levels and neutralization titers. RESULTS: All participants (N = 70) had received two rounds of vaccination and were found to have antibodies with wide variation in relative levels. Antibody levels trended lower in males, advanced age, current use of steroids, and longer length of time from vaccination. Pseudovirus neutralization titer levels were strongly correlated (P < .001) with Beckman Coulter antibody levels [D614 G NT50, rs = 0.91; B.1.1.7 (UK) NT50, rs = 0.91]. CONCLUSIONS AND IMPLICATIONS: Higher functioning, healthier, residential older adults mounted detectable antibody responses when vaccinated with mRNA-based COVID-19 vaccines. Data suggests some degree of immunity is present during the immediate period following vaccination. However, protective effects remain to be determined in larger studies as clinical protection is afforded by ongoing adaptive immunity, which is known to be decreased in older adults. This study provides important preliminary results on level of population risk in older adult residents at assisted living, personal care, and independent living communities to inform reopening strategies, but are not likely to be translatable for residents in nursing homes.


Subject(s)
COVID-19 Vaccines , COVID-19 , Aged , Antibody Formation , Cross-Sectional Studies , Humans , Male , RNA, Messenger , SARS-CoV-2 , Vaccination
17.
Open Forum Infect Dis ; 8(2): ofab022, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-1091225

ABSTRACT

BACKGROUND: We implemented a preprocedural severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) screening initiative designed to sustain health care during a time when the extent of SARS-CoV-2 infection was unknown. METHODS: This was a prospective study of patients undergoing procedures at 3 academic hospitals in Pittsburgh, Pennsylvania (April 21-June 11), and 19 community hospitals across Middle/Western Pennsylvania and Southwestern New York (May 1-June 11). Patients at academic hospitals underwent symptom screening ≤7 days preprocedure, then SARS-CoV-2 nasopharyngeal polymerase chain reaction (PCR) testing 1-4 days preprocedure. A subset also underwent day-of-procedure testing. Community hospital patients underwent testing per local protocols. We report SARS-CoV-2 PCR positivity rates, impact, and barriers to testing encountered through June 11. PCR positivity rates of optional preprocedural SARS-CoV-2 testing for 2 consecutive periods following the screening initiative are also reported. RESULTS: Of 5881 eligible academic hospital patients, 2415 (41.1%) were tested (April 21-June 11). Lack of interest, distance, self-isolation, and nursing home/incarceration status were barriers. There were 11 PCR-positive patients (10 asymptomatic) among 10 539 patients tested (0.10%; 95% CI, 0.05%-0.19%): 3/2415 (0.12%; 95% CI, 0.02%-0.36%) and 8/8124 (0.10%; 95% CI, 0.04%-0.19%) at academic and community hospitals, respectively. Procedures were performed as scheduled in 40% (4/10) of asymptomatic PCR-positive patients. Positivity increased during subsequent coronavirus disease 2019 (COVID-19) surges: 54/34 948 (0.15%; 95% CI, 0.12%-0.20%) and 101/24 741 (0.41%; 95% CI, 0.33%-0.50%) PCR-positive patients from June 12-September 10 and September 11-December 15, respectively (P < .0001). CONCLUSIONS: Implementing preprocedural PCR testing was complex and revealed low infection rates (0.24% overall), which increased during COVID-19 surges. Additional studies are needed to define the COVID-19 prevalence threshold at which universal preprocedural screening is warranted.

18.
Curr Opin HIV AIDS ; 16(1): 3-10, 2021 01.
Article in English | MEDLINE | ID: covidwho-927142

ABSTRACT

PURPOSE OF REVIEW: In response to the HIV-AIDS pandemic, great strides have been made in developing molecular methods that accurately quantify nucleic acid products of HIV-1 at different stages of viral replication and to assess HIV-1 sequence diversity and its effect on susceptibility to small molecule inhibitors and neutralizing antibodies. Here, we review how knowledge gained from these approaches, including viral RNA quantification and sequence analyses, have been rapidly applied to study SARS-CoV-2 and the COVID-19 pandemic. RECENT FINDINGS: Recent studies have shown detection of SARS-CoV-2 RNA in blood of infected individuals by reverse transcriptase PCR (RT-PCR); and, as in HIV-1 infection, there is growing evidence that the level of viral RNA in plasma may be related to COVID disease severity. Unlike HIV-1, SARS-CoV-2 sequences are highly conserved limiting SARS-CoV-2 sequencing applications to investigating interpatient genetic diversity for phylogenetic analysis. Sensitive sequencing technologies, originally developed for HIV-1, will be needed to investigate intrapatient SARS-CoV-2 genetic variation in response to antiviral therapeutics and vaccines. SUMMARY: Methods used for HIV-1 have been rapidly applied to SARS-CoV-2/COVID-19 to understand pathogenesis and prognosis. Further application of such methods should improve precision of therapy and outcome.


Subject(s)
COVID-19/virology , HIV Infections/virology , HIV-1/isolation & purification , RNA, Viral/genetics , SARS-CoV-2/isolation & purification , COVID-19/blood , COVID-19/diagnosis , HIV Infections/blood , HIV Infections/diagnosis , HIV-1/genetics , Humans , RNA, Viral/blood , SARS-CoV-2/genetics
19.
Proc Natl Acad Sci U S A ; 117(47): 29832-29838, 2020 11 24.
Article in English | MEDLINE | ID: covidwho-900111

ABSTRACT

Effective therapies are urgently needed for the SARS-CoV-2/COVID-19 pandemic. We identified panels of fully human monoclonal antibodies (mAbs) from large phage-displayed Fab, scFv, and VH libraries by panning against the receptor binding domain (RBD) of the SARS-CoV-2 spike (S) glycoprotein. A high-affinity Fab was selected from one of the libraries and converted to a full-size antibody, IgG1 ab1, which competed with human ACE2 for binding to RBD. It potently neutralized replication-competent SARS-CoV-2 but not SARS-CoV, as measured by two different tissue culture assays, as well as a replication-competent mouse ACE2-adapted SARS-CoV-2 in BALB/c mice and native virus in hACE2-expressing transgenic mice showing activity at the lowest tested dose of 2 mg/kg. IgG1 ab1 also exhibited high prophylactic and therapeutic efficacy in a hamster model of SARS-CoV-2 infection. The mechanism of neutralization is by competition with ACE2 but could involve antibody-dependent cellular cytotoxicity (ADCC) as IgG1 ab1 had ADCC activity in vitro. The ab1 sequence has a relatively low number of somatic mutations, indicating that ab1-like antibodies could be quickly elicited during natural SARS-CoV-2 infection or by RBD-based vaccines. IgG1 ab1 did not aggregate, did not exhibit other developability liabilities, and did not bind to any of the 5,300 human membrane-associated proteins tested. These results suggest that IgG1 ab1 has potential for therapy and prophylaxis of SARS-CoV-2 infections. The rapid identification (within 6 d of availability of antigen for panning) of potent mAbs shows the value of large antibody libraries for response to public health threats from emerging microbes.


Subject(s)
COVID-19 Serological Testing/methods , COVID-19 Vaccines/immunology , COVID-19/therapy , Angiotensin-Converting Enzyme 2/metabolism , Animals , Antibodies, Viral/blood , Antibodies, Viral/immunology , Antibody-Dependent Cell Cytotoxicity , COVID-19 Serological Testing/standards , COVID-19 Vaccines/standards , Chlorocebus aethiops , Cricetinae , Female , Humans , Immunization, Passive/methods , Immunization, Passive/standards , Immunogenicity, Vaccine , Immunoglobulin G/blood , Immunoglobulin G/immunology , Mice , Mice, Inbred BALB C , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Vero Cells
20.
Cell ; 183(2): 429-441.e16, 2020 10 15.
Article in English | MEDLINE | ID: covidwho-878393

ABSTRACT

Novel COVID-19 therapeutics are urgently needed. We generated a phage-displayed human antibody VH domain library from which we identified a high-affinity VH binder ab8. Bivalent VH, VH-Fc ab8, bound with high avidity to membrane-associated S glycoprotein and to mutants found in patients. It potently neutralized mouse-adapted SARS-CoV-2 in wild-type mice at a dose as low as 2 mg/kg and exhibited high prophylactic and therapeutic efficacy in a hamster model of SARS-CoV-2 infection, possibly enhanced by its relatively small size. Electron microscopy combined with scanning mutagenesis identified ab8 interactions with all three S protomers and showed how ab8 neutralized the virus by directly interfering with ACE2 binding. VH-Fc ab8 did not aggregate and did not bind to 5,300 human membrane-associated proteins. The potent neutralization activity of VH-Fc ab8 combined with good developability properties and cross-reactivity to SARS-CoV-2 mutants provide a strong rationale for its evaluation as a COVID-19 therapeutic.


Subject(s)
Coronavirus Infections/drug therapy , Immunoglobulin Heavy Chains/administration & dosage , Immunoglobulin Variable Region/administration & dosage , Peptide Library , Pneumonia, Viral/drug therapy , Angiotensin-Converting Enzyme 2 , Animals , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/ultrastructure , Antibodies, Viral/administration & dosage , Antibodies, Viral/chemistry , Antibodies, Viral/immunology , Antibodies, Viral/ultrastructure , Antibody Affinity , COVID-19 , Cricetinae , Female , Humans , Immunoglobulin Fc Fragments/immunology , Immunoglobulin Heavy Chains/chemistry , Immunoglobulin Heavy Chains/immunology , Immunoglobulin Heavy Chains/ultrastructure , Immunoglobulin Variable Region/chemistry , Immunoglobulin Variable Region/immunology , Immunoglobulin Variable Region/ultrastructure , Mice , Mice, Inbred BALB C , Mutation , Pandemics , Peptidyl-Dipeptidase A/metabolism , Protein Domains , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL