Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
2.
Immunity ; 54(12): 2877-2892.e7, 2021 12 14.
Article in English | MEDLINE | ID: covidwho-1499988

ABSTRACT

Adjuvants are critical for improving the quality and magnitude of adaptive immune responses to vaccination. Lipid nanoparticle (LNP)-encapsulated nucleoside-modified mRNA vaccines have shown great efficacy against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), but the mechanism of action of this vaccine platform is not well-characterized. Using influenza virus and SARS-CoV-2 mRNA and protein subunit vaccines, we demonstrated that our LNP formulation has intrinsic adjuvant activity that promotes induction of strong T follicular helper cell, germinal center B cell, long-lived plasma cell, and memory B cell responses that are associated with durable and protective antibodies in mice. Comparative experiments demonstrated that this LNP formulation outperformed a widely used MF59-like adjuvant, AddaVax. The adjuvant activity of the LNP relies on the ionizable lipid component and on IL-6 cytokine induction but not on MyD88- or MAVS-dependent sensing of LNPs. Our study identified LNPs as a versatile adjuvant that enhances the efficacy of traditional and next-generation vaccine platforms.


Subject(s)
B-Lymphocytes/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , Germinal Center/immunology , SARS-CoV-2/physiology , T-Lymphocytes, Helper-Inducer/immunology , /immunology , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adjuvants, Immunologic , Animals , HEK293 Cells , Humans , Immunity, Humoral , Interleukin-6/genetics , Interleukin-6/metabolism , Liposomes/administration & dosage , Mice , Mice, Inbred BALB C , Nanoparticles/administration & dosage , Protein Subunits/genetics , /genetics
3.
Science ; 374(6572): abm0829, 2021 Dec 03.
Article in English | MEDLINE | ID: covidwho-1467659

ABSTRACT

The durability of immune memory after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) messenger RNA (mRNA) vaccination remains unclear. In this study, we longitudinally profiled vaccine responses in SARS-CoV-2­naïve and ­recovered individuals for 6 months after vaccination. Antibodies declined from peak levels but remained detectable in most subjects at 6 months. By contrast, mRNA vaccines generated functional memory B cells that increased from 3 to 6 months postvaccination, with the majority of these cells cross-binding the Alpha, Beta, and Delta variants. mRNA vaccination further induced antigen-specific CD4+ and CD8+ T cells, and early CD4+ T cell responses correlated with long-term humoral immunity. Recall responses to vaccination in individuals with preexisting immunity primarily increased antibody levels without substantially altering antibody decay rates. Together, these findings demonstrate robust cellular immune memory to SARS-CoV-2 and its variants for at least 6 months after mRNA vaccination.


Subject(s)
COVID-19 Vaccines/immunology , Immunologic Memory , SARS-CoV-2/genetics , SARS-CoV-2/immunology , /immunology , Humans
4.
Nat Commun ; 12(1): 5417, 2021 09 14.
Article in English | MEDLINE | ID: covidwho-1410404

ABSTRACT

COVID-19 is associated with a wide range of clinical manifestations, including autoimmune features and autoantibody production. Here we develop three protein arrays to measure IgG autoantibodies associated with connective tissue diseases, anti-cytokine antibodies, and anti-viral antibody responses in serum from 147 hospitalized COVID-19 patients. Autoantibodies are identified in approximately 50% of patients but in less than 15% of healthy controls. When present, autoantibodies largely target autoantigens associated with rare disorders such as myositis, systemic sclerosis and overlap syndromes. A subset of autoantibodies targeting traditional autoantigens or cytokines develop de novo following SARS-CoV-2 infection. Autoantibodies track with longitudinal development of IgG antibodies recognizing SARS-CoV-2 structural proteins and a subset of non-structural proteins, but not proteins from influenza, seasonal coronaviruses or other pathogenic viruses. We conclude that SARS-CoV-2 causes development of new-onset IgG autoantibodies in a significant proportion of hospitalized COVID-19 patients and are positively correlated with immune responses to SARS-CoV-2 proteins.


Subject(s)
Autoantibodies/immunology , COVID-19/immunology , Immunoglobulin G/immunology , SARS-CoV-2/immunology , Aged , Antibodies, Antinuclear/blood , Antibodies, Antinuclear/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Autoantibodies/blood , Autoantigens/immunology , Connective Tissue Diseases/immunology , Cytokines/immunology , Female , Hospitalization , Humans , Immunoglobulin G/blood , Male , Middle Aged , SARS-CoV-2/pathogenicity , Viral Proteins/immunology
5.
Sci Immunol ; 6(58)2021 04 15.
Article in English | MEDLINE | ID: covidwho-1349998

ABSTRACT

Novel mRNA vaccines for SARS-CoV-2 have been authorized for emergency use. Despite their efficacy in clinical trials, data on mRNA vaccine-induced immune responses are mostly limited to serological analyses. Here, we interrogated antibody and antigen-specific memory B cells over time in 33 SARS-CoV-2 naïve and 11 SARS-CoV-2 recovered subjects. SARS-CoV-2 naïve individuals required both vaccine doses for optimal increases in antibodies, particularly for neutralizing titers against the B.1.351 variant. Memory B cells specific for full-length spike protein and the spike receptor binding domain (RBD) were also efficiently primed by mRNA vaccination and detectable in all SARS-CoV-2 naive subjects after the second vaccine dose, though the memory B cell response declined slightly with age. In SARS-CoV-2 recovered individuals, antibody and memory B cell responses were significantly boosted after the first vaccine dose; however, there was no increase in circulating antibodies, neutralizing titers, or antigen-specific memory B cells after the second dose. This robust boosting after the first vaccine dose strongly correlated with levels of pre-existing memory B cells in recovered individuals, identifying a key role for memory B cells in mounting recall responses to SARS-CoV-2 antigens. Together, our data demonstrated robust serological and cellular priming by mRNA vaccines and revealed distinct responses based on prior SARS-CoV-2 exposure, whereby COVID-19 recovered subjects may only require a single vaccine dose to achieve peak antibody and memory B cell responses. These findings also highlight the utility of defining cellular responses in addition to serologies and may inform SARS-CoV-2 vaccine distribution in a resource-limited setting.


Subject(s)
Antibodies, Viral/immunology , B-Lymphocytes/immunology , COVID-19 Vaccines , COVID-19/immunology , SARS-CoV-2/immunology , Vaccines, Synthetic , Adult , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Female , Humans , Male , Middle Aged , RNA, Messenger , Spike Glycoprotein, Coronavirus/immunology , Vaccination , Young Adult
6.
JCI Insight ; 6(9)2021 05 10.
Article in English | MEDLINE | ID: covidwho-1243741

ABSTRACT

Abs that neutralize SARS-CoV-2 are thought to provide the most immediate and effective treatment for those severely afflicted by this virus. Because coronavirus potentially diversifies by mutation, broadly neutralizing Abs are especially sought. Here, we report a possibly novel approach to rapid generation of potent broadly neutralizing human anti-SARS-CoV-2 Abs. We isolated SARS-CoV-2 spike protein-specific memory B cells by panning from the blood of convalescent subjects after infection with SARS-CoV-2 and sequenced and expressed Ig genes from individual B cells as human mAbs. All of 43 human mAbs generated in this way neutralized SARS-CoV-2. Eighteen of the forty-three human mAbs exhibited half-maximal inhibitory concentrations (IC50) of 6.7 × 10-12 M to 6.7 × 10-15 M for spike-pseudotyped virus. Seven of the human mAbs also neutralized (with IC50 < 6.7 × 10-12 M) viruses pseudotyped with mutant spike proteins (including receptor-binding domain mutants and the S1 C-terminal D614G mutant). Neutralization of the Wuhan Hu-1 founder strain and of some variants decreased when coding sequences were reverted to germline, suggesting that potency of neutralization was acquired by somatic hypermutation and selection of B cells. These results indicate that infection with SARS-CoV-2 evokes high-affinity B cell responses, some products of which are broadly neutralizing and others highly strain specific. We also identify variants that would potentially resist immunity evoked by infection with the Wuhan Hu-1 founder strain or by vaccines developed with products of that strain, suggesting evolutionary courses that SARS-CoV-2 could take.


Subject(s)
Antibodies, Neutralizing/genetics , Antibodies, Viral/genetics , COVID-19/immunology , SARS-CoV-2/immunology , Adult , Aged , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/immunology , Antibody Specificity , B-Lymphocytes/immunology , Broadly Neutralizing Antibodies/genetics , COVID-19/therapy , COVID-19/virology , Humans , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Variable Region/genetics , Immunologic Memory , Middle Aged , Neutralization Tests , Pandemics , SARS-CoV-2/genetics , Somatic Hypermutation, Immunoglobulin , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
7.
Cell Host Microbe ; 28(4): 499-501, 2020 10 07.
Article in English | MEDLINE | ID: covidwho-838112

ABSTRACT

In this issue of Cell Host & Microbe, Nielsen and colleagues sequence antibody repertoires of patients with severe COVID-19 to reveal potentially convergent features on the background of a larger, polyclonal response. Their findings suggest that, as databases improve, it may be possible to monitor virus-specific B cells after infection or vaccination using antibody sequencing.


Subject(s)
Coronavirus Infections , Pandemics , Pneumonia, Viral , Severe Acute Respiratory Syndrome , Antibodies, Viral , Antibody Formation , B-Lymphocytes , Betacoronavirus , COVID-19 , Humans , Immunoglobulin G , SARS-CoV-2
8.
Sci Immunol ; 5(49)2020 07 15.
Article in English | MEDLINE | ID: covidwho-646575

ABSTRACT

Although critical illness has been associated with SARS-CoV-2-induced hyperinflammation, the immune correlates of severe COVID-19 remain unclear. Here, we comprehensively analyzed peripheral blood immune perturbations in 42 SARS-CoV-2 infected and recovered individuals. We identified extensive induction and activation of multiple immune lineages, including T cell activation, oligoclonal plasmablast expansion, and Fc and trafficking receptor modulation on innate lymphocytes and granulocytes, that distinguished severe COVID-19 cases from healthy donors or SARS-CoV-2-recovered or moderate severity patients. We found the neutrophil to lymphocyte ratio to be a prognostic biomarker of disease severity and organ failure. Our findings demonstrate broad innate and adaptive leukocyte perturbations that distinguish dysregulated host responses in severe SARS-CoV-2 infection and warrant therapeutic investigation.


Subject(s)
B-Lymphocyte Subsets/immunology , Betacoronavirus/immunology , Coronavirus Infections/immunology , Neutrophils/immunology , Pneumonia, Viral/immunology , T-Lymphocytes/immunology , Aged , COVID-19 , Clonal Selection, Antigen-Mediated/immunology , Coronavirus Infections/pathology , Cytokines/metabolism , Female , Humans , Immunity, Innate/immunology , Immunologic Memory/immunology , Lymphocyte Activation/immunology , Lymphocyte Count , Male , Middle Aged , Pandemics , Pneumonia, Viral/pathology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL