ABSTRACT
Several countries started a 2nd booster COVID-19 vaccination campaign targeting the elderly population, but evidence around its effectiveness is still scarce. This study aims to estimate the relative effectiveness of a 2nd booster dose of COVID-19 mRNA vaccine in the population aged ≥ 80 years in Italy, during predominant circulation of the Omicron BA.2 and BA.5 subvariants. We linked routine data from the national vaccination registry and the COVID-19 surveillance system. On each day between 11 April and 6 August 2022, we matched 1:1, according to several demographic and clinical characteristics, individuals who received the 2nd booster vaccine dose with individuals who received the 1st booster vaccine dose at least 120 days earlier. We used the Kaplan-Meier method to compare the risks of SARS-CoV-2 infection and severe COVID-19 (hospitalisation or death) between the two groups, calculating the relative vaccine effectiveness (RVE) as (1 - risk ratio)X100. Based on the analysis of 831,555 matched pairs, we found that a 2nd booster dose of mRNA vaccine, 14-118 days post administration, was moderately effective in preventing SARS-CoV-2 infection compared to a 1st booster dose administered at least 120 days earlier [14.3 %, 95 % confidence interval (CI): 2.2-20.2]. RVE decreased from 28.5 % (95 % CI: 24.7-32.1) in the time-interval 14-28 days to 7.6 % (95 % CI: -14.1 to 18.3) in the time-interval 56-118 days. However, RVE against severe COVID-19 was higher (34.0 %, 95 % CI: 23.4-42.7), decreasing from 43.2 % (95 % CI: 30.6-54.9) to 27.2 % (95 % CI: 8.3-42.9) over the same time span. Although RVE against SARS-CoV-2 infection was much reduced 2-4 months after a 2nd booster dose, RVE against severe COVID-19 was about 30 %, even during prevalent circulation of the Omicron BA.5 subvariant. The cost-benefit of a 3rd booster dose for the elderly people who received the 2nd booster dose at least four months earlier should be carefully evaluated.
ABSTRACT
BACKGROUND: Myocarditis and pericarditis following the Coronavirus Disease 2019 (COVID-19) mRNA vaccines administration have been reported, but their frequency is still uncertain in the younger population. This study investigated the association between Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) mRNA vaccines, BNT162b2, and mRNA-1273 and myocarditis/pericarditis in the population of vaccinated persons aged 12 to 39 years in Italy. METHODS AND FINDINGS: We conducted a self-controlled case series study (SCCS) using national data on COVID-19 vaccination linked to emergency care/hospital discharge databases. The outcome was the first diagnosis of myocarditis/pericarditis between 27 December 2020 and 30 September 2021. Exposure risk period (0 to 21 days from the vaccination day, subdivided in 3 equal intervals) for first and second dose was compared with baseline period. The SCCS model, adapted to event-dependent exposures, was fitted using unbiased estimating equations to estimate relative incidences (RIs) and excess of cases (EC) per 100,000 vaccinated by dose, age, sex, and vaccine product. Calendar period was included as time-varying confounder in the model. During the study period 2,861,809 persons aged 12 to 39 years received mRNA vaccines (2,405,759 BNT162b2; 456,050 mRNA-1273); 441 participants developed myocarditis/pericarditis (346 BNT162b2; 95 mRNA-1273). Within the 21-day risk interval, 114 myocarditis/pericarditis events occurred, the RI was 1.99 (1.30 to 3.05) after second dose of BNT162b2 and 2.22 (1.00 to 4.91) and 2.63 (1.21 to 5.71) after first and second dose of mRNA-1273. During the [0 to 7) days risk period, an increased risk of myocarditis/pericarditis was observed after first dose of mRNA-1273, with RI of 6.55 (2.73 to 15.72), and after second dose of BNT162b2 and mRNA-1273, with RIs of 3.39 (2.02 to 5.68) and 7.59 (3.26 to 17.65). The number of EC for second dose of mRNA-1273 was 5.5 per 100,000 vaccinated (3.0 to 7.9). The highest risk was observed in males, at [0 to 7) days after first and second dose of mRNA-1273 with RI of 12.28 (4.09 to 36.83) and RI of 11.91 (3.88 to 36.53); the number of EC after the second dose of mRNA-1273 was 8.8 (4.9 to 12.9). Among those aged 12 to 17 years, the RI was of 5.74 (1.52 to 21.72) after second dose of BNT162b2; for this age group, the number of events was insufficient for estimating RIs after mRNA-1273. Among those aged 18 to 29 years, the RIs were 7.58 (2.62 to 21.94) after first dose of mRNA-1273 and 4.02 (1.81 to 8.91) and 9.58 (3.32 to 27.58) after second dose of BNT162b2 and mRNA-1273; the numbers of EC were 3.4 (1.1 to 6.0) and 8.6 (4.4 to 12.6) after first and second dose of mRNA-1273. The main study limitations were that the outcome was not validated through review of clinical records, and there was an absence of information on the length of hospitalization and, thus, the severity of the outcome. CONCLUSIONS: This population-based study of about 3 millions of residents in Italy suggested that mRNA vaccines were associated with myocarditis/pericarditis in the population younger than 40 years. According to our results, increased risk of myocarditis/pericarditis was associated with the second dose of BNT162b2 and both doses of mRNA-1273. The highest risks were observed in males of 12 to 39 years and in males and females 18 to 29 years vaccinated with mRNA-1273. The public health implication of these findings should be considered in the light of the proven mRNA vaccine effectiveness in preventing serious COVID-19 disease and death.
Subject(s)
COVID-19 Vaccines , COVID-19 , Myocarditis , Pericarditis , 2019-nCoV Vaccine mRNA-1273 , Adolescent , Adult , BNT162 Vaccine , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Child , Female , Humans , Italy/epidemiology , Male , Myocarditis/chemically induced , Myocarditis/epidemiology , Pericarditis/chemically induced , Pericarditis/epidemiology , Product Surveillance, Postmarketing , SARS-CoV-2 , Vaccination/adverse effects , Young AdultABSTRACT
BACKGROUND: By April 13, 2022, more than 4 months after the approval of BNT162b2 (Pfizer-BioNTech) for children, less than 40% of 5-11-year-olds in Italy had been vaccinated against COVID-19. Estimating how effective vaccination is in 5-11-year-olds in the current epidemiological context dominated by the omicron variant (B.1.1.529) is important to inform public health bodies in defining vaccination policies and strategies. METHODS: In this retrospective population analysis, we assessed vaccine effectiveness against SARS-CoV-2 infection and severe COVID-19, defined as an infection leading to hospitalisation or death, by linking the national COVID-19 surveillance system and the national vaccination registry. All Italian children aged 5-11 years without a previous diagnosis of infection were eligible for inclusion and were followed up from Jan 17 to April 13, 2022. All children with inconsistent vaccination data, diagnosed with SARS-CoV-2 infection before the start date of the study or without information on the municipality of residence were excluded from the analysis. With unvaccinated children as the reference group, we estimated vaccine effectiveness in those who were partly vaccinated (one dose) and those who were fully vaccinated (two doses). FINDINGS: By April 13, 2022, 1 063 035 (35·8%) of the 2 965 918 children aged 5-11 years included in the study had received two doses of the vaccine, 134 386 (4·5%) children had received one dose only, and 1 768 497 (59·6%) were unvaccinated. During the study period, 766 756 cases of SARS-CoV-2 infection and 644 cases of severe COVID-19 (627 hospitalisations, 15 admissions to intensive care units, and two deaths) were notified. Overall, vaccine effectiveness in the fully vaccinated group was 29·4% (95% CI 28·5-30·2) against SARS-CoV-2 infection and 41·1% (22·2-55·4) against severe COVID-19, whereas vaccine effectiveness in the partly vaccinated group was 27·4% (26·4-28·4) against SARS-CoV-2 infection and 38·1% (20·9-51·5) against severe COVID-19. Vaccine effectiveness against infection peaked at 38·7% (37·7-39·7) at 0-14 days after full vaccination and decreased to 21·2% (19·7-22·7) at 43-84 days after full vaccination. INTERPRETATION: Vaccination against COVID-19 in children aged 5-11 years in Italy showed a lower effectiveness in preventing SARS-CoV-2 infection and severe COVID-19 than in individuals aged 12 years and older. Effectiveness against infection appears to decrease after completion of the current primary vaccination cycle. FUNDING: None. TRANSLATION: For the Italian translation of the summary see Supplementary Materials section.
Subject(s)
COVID-19 , Viral Vaccines , BNT162 Vaccine , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Child , Humans , Retrospective Studies , SARS-CoV-2ABSTRACT
BACKGROUND: Consolidated information on the effectiveness of COVID-19 booster vaccination in Europe are scarce. RESEARCH DESIGN AND METHODS: We assessed the effectiveness of a booster dose of an mRNA vaccine against any SARS-CoV-2 infection (symptomatic or asymptomatic) and severe COVID-19 (hospitalization or death) after over two months from administration among priority target groups (n = 18,524,568) during predominant circulation of the Delta variant in Italy (July-December 2021). RESULTS: Vaccine effectiveness (VE) against SARS-CoV-2 infection and, to a lesser extent, against severe COVID-19, among people ≥60 years and other high-risk groups (i.e. healthcare workers, residents in long-term-care facilities, and persons with comorbidities or immunocompromised), peaked in the time-interval 3-13 weeks (VE against infection = 67.2%, 95% confidence interval (CI): 62.5-71.3; VE against severe disease = 89.5%, 95% CI: 86.1-92.0) and then declined, waning 26 weeks after full primary vaccination (VE against infection = 12.2%, 95% CI: -4.7-26.4; VE against severe disease = 65.3%, 95% CI: 50.3-75.8). After 3-10 weeks from the administration of a booster dose, VE against infection and severe disease increased to 76.1% (95% CI: 70.4-80.7) and 93.0% (95% CI: 90.2-95.0), respectively. CONCLUSIONS: These results support the ongoing vaccination campaign in Italy, where the administration of a booster dose four months after completion of primary vaccination is recommended.
Subject(s)
COVID-19 , COVID-19/epidemiology , COVID-19/prevention & control , Humans , SARS-CoV-2 , Vaccines, Synthetic , mRNA VaccinesABSTRACT
OBJECTIVES: To estimate the effectiveness of mRNA vaccines against SARS-CoV-2 infection and severe covid-19 at different time after vaccination. DESIGN: Retrospective cohort study. SETTING: Italy, 27 December 2020 to 7 November 2021. PARTICIPANTS: 33 250 344 people aged ≥16 years who received a first dose of BNT162b2 (Pfizer-BioNTech) or mRNA-1273 (Moderna) vaccine and did not have a previous diagnosis of SARS-CoV-2 infection. MAIN OUTCOME MEASURES: SARS-CoV-2 infection and severe covid-19 (admission to hospital or death). Data were divided by weekly time intervals after vaccination. Incidence rate ratios at different time intervals were estimated by multilevel negative binomial models with robust variance estimator. Sex, age group, brand of vaccine, priority risk category, and regional weekly incidence in the general population were included as covariates. Geographic region was included as a random effect. Adjusted vaccine effectiveness was calculated as (1-IRR)×100, where IRR=incidence rate ratio, with the time interval 0-14 days after the first dose of vaccine as the reference. RESULTS: During the epidemic phase when the delta variant was the predominant strain of the SARS-CoV-2 virus, vaccine effectiveness against SARS-CoV-2 infection significantly decreased (P<0.001) from 82% (95% confidence interval 80% to 84%) at 3-4 weeks after the second dose of vaccine to 33% (27% to 39%) at 27-30 weeks after the second dose. In the same time intervals, vaccine effectiveness against severe covid-19 also decreased (P<0.001), although to a lesser extent, from 96% (95% to 97%) to 80% (76% to 83%). High risk people (vaccine effectiveness -6%, -28% to 12%), those aged ≥80 years (11%, -15% to 31%), and those aged 60-79 years (2%, -11% to 14%) did not seem to be protected against infection at 27-30 weeks after the second dose of vaccine. CONCLUSIONS: The results support the vaccination campaigns targeting high risk people, those aged ≥60 years, and healthcare workers to receive a booster dose of vaccine six months after the primary vaccination cycle. The results also suggest that timing the booster dose earlier than six months after the primary vaccination cycle and extending the offer of the booster dose to the wider eligible population might be warranted.
Subject(s)
2019-nCoV Vaccine mRNA-1273/immunology , BNT162 Vaccine/immunology , COVID-19/epidemiology , Immunization, Secondary/statistics & numerical data , SARS-CoV-2/pathogenicity , 2019-nCoV Vaccine mRNA-1273/administration & dosage , Adolescent , Adult , Aged , Aged, 80 and over , BNT162 Vaccine/administration & dosage , COVID-19/diagnosis , COVID-19/immunology , COVID-19/prevention & control , Female , Follow-Up Studies , Humans , Immunogenicity, Vaccine , Incidence , Italy/epidemiology , Male , Middle Aged , SARS-CoV-2/isolation & purification , Severity of Illness Index , Time Factors , Treatment Outcome , Vaccination/statistics & numerical data , Young AdultABSTRACT
To investigate the association of the 2019-2020 influenza vaccine with prognosis of patients positive for SARS-CoV-2A, a large multi-database cohort study was conducted in four Italian regions (i.e., Lazio, Lombardy, Veneto, and Tuscany) and the Reggio Emilia province (Emilia-Romagna). More than 21 million adults were residing in the study area (42% of the population). We included 115,945 COVID-19 cases diagnosed during the first wave of the pandemic (February-May, 2020); 34.6% of these had been vaccinated against influenza. Three outcomes were considered: hospitalization, death, and intensive care unit (ICU) admission/death. The adjusted relative risk (RR) of being hospitalized in the vaccinated group when compared with the non-vaccinated group was 0.87 (95% CI: 0.86-0.88). This reduction in risk was not confirmed for death (RR = 1.04; 95% CI: 1.01-1.06), or for the combined outcome of ICU admission or death. In conclusion, our study, conducted on the vast majority of the population during the first wave of the pandemic in Italy, showed a 13% statistically significant reduction in the risk of hospitalization in some geographical areas and in the younger population. No impact of seasonal influenza vaccination on COVID-19 prognosis in terms of death and death or ICU admission was estimated.
ABSTRACT
To assess the real-world impact of vaccines on COVID-19 related outcomes, we analysed data from over 7 million recipients of at least one COVID-19 vaccine dose in Italy. Taking 0-14 days post-first dose as reference, the SARS-CoV-2 infection risk subsequently decreased, reaching a reduction by 78% (incidence rate ratios (IRR): 0.22; 95% CI: 0.21-0.24) 43-49 days post-first dose. Similarly, hospitalisation and death risks decreased, with 89% (IRR: 0.11; 95% CI: 0.09-0.15) and 93% (IRR: 0.07; 95% CI: 0.04-0.11) reductions 36-42 days post-first dose. Our results support ongoing vaccination campaigns.
Subject(s)
COVID-19 , Vaccines , COVID-19 Vaccines , Hospitalization , Hospitals , Humans , Italy/epidemiology , SARS-CoV-2ABSTRACT
INTRODUCTION: The epidemic due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has been spreading globally, raising increasing concerns. There are several controversial hypotheses on the potentially harmful or beneficial effects of antihypertensive drugs acting on the renin-angiotensin-aldosterone system (RAAS) in coronavirus disease 2019 (COVID-19). Furthermore, there is accumulating evidence, based on several observational studies, that angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs) do not increase the risk of contracting SARS-CoV-2 infection. On the other hand, conflicting findings regarding the role of ACEIs/ARBs as prognosis modifiers in COVID-19 hospitalised patients have been reported. OBJECTIVE: The aim of this large-scale, retrospective cohort study was to investigate whether prior exposure to ACEIs and/or ARBs was associated with all-cause mortality among over 40,000 hospitalised COVID-19 patients compared with calcium channel blockers (CCBs), a potential therapeutic alternative. METHODS: This study was conducted using COVID-19 registries linked to claims databases from Lombardy, Veneto and Reggio Emilia (overall, 25% of Italian population). Overall, 42,926 patients hospitalised between 21 February and 21 April 2020 with a diagnosis of COVID-19 confirmed by real-time polymerase chain reaction tests were included in this study. All-cause mortality occurring in or out of hospital, as reported in the COVID-19 registry, was estimated. Using Cox models, adjusted hazard ratios (HRs) of all-cause mortality (along with 95% confidence intervals [CIs]) were estimated separately for ACEIs/ARBs and other antihypertensives versus CCBs and non-use. RESULTS: Overall, 11,205 in- and out-of-hospital deaths occurred over a median of 24 days of follow-up after hospital admission due to COVID-19. Compared with CCBs, adjusted analyses showed no difference in the risk of death among ACEI (HR 0.97, 95% CI 0.89-1.06) or ARB (HR 0.98, 95% CI 0.89-1.06) users. When non-use of antihypertensives was considered as a comparator, a modest statistically significant increase in mortality risk was observed for any antihypertensive use. However, when restricting to drugs with antihypertensive indications only, these marginal increases disappeared. Sensitivity and subgroup analyses confirmed our main findings. CONCLUSIONS: ACEI/ARB use is not associated with either an increased or decreased risk of all-cause mortality, compared with CCB use, in the largest cohort of hospitalised COVID-19 patients exposed to these drugs studied to date. The use of these drugs therefore does not affect the prognosis of COVID-19. This finding strengthens recommendations of international regulatory agencies about not withdrawing/switching ACEI/ARB treatments to modify COVID-19 prognosis.