Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Add filters

Document Type
Year range
Microorganisms ; 11(5)2023 Apr 24.
Article in English | MEDLINE | ID: covidwho-20232951


Rare cases of Pseudomonas aeruginosa community-acquired pneumonia (PA-CAP) were reported in non-immunocompromised patients. We describe a case of Pseudomonas aeruginosa (PA) necrotizing cavitary CAP with a fatal outcome in a 53-year-old man previously infected with SARS-CoV-2, who was admitted for dyspnea, fever, cough, hemoptysis, acute respiratory failure and a right upper lobe opacification. Six hours after admission, despite effective antibiotic therapy, he experienced multi-organ failure and died. Autopsy confirmed necrotizing pneumonia with alveolar hemorrhage. Blood and bronchoalveolar lavage cultures were positive for PA serotype O:9 belonging to ST1184. The strain shares the same virulence factor profile with reference genome PA01. With the aim to better investigate the clinical and molecular characteristics of PA-CAP, we considered the literature of the last 13 years concerning this topic. The prevalence of hospitalized PA-CAP is about 4% and has a mortality rate of 33-66%. Smoking, alcohol abuse and contaminated fluid exposure were the recognized risk factors; most cases presented the same symptoms described above and needed intensive care. Co-infection of PA-influenza A is described, which is possibly caused by influenza-inducing respiratory epithelial cell dysfunction: the same pathophysiological mechanism could be assumed with SARS-CoV-2 infection. Considering the high rate of fatal outcomes, additional studies are needed to identify sources of infections and new risk factors, along with genetic and immunological features. Current CAP guidelines should be revised in light of these results.

Sci Rep ; 12(1): 5736, 2022 04 06.
Article in English | MEDLINE | ID: covidwho-1778634


The aims of this study were to characterize new SARS-CoV-2 genomes sampled all over Italy and to reconstruct the origin and the evolutionary dynamics in Italy and Europe between February and June 2020. The cluster analysis showed only small clusters including < 80 Italian isolates, while most of the Italian strains were intermixed in the whole tree. Pure Italian clusters were observed mainly after the lockdown and distancing measures were adopted. Lineage B and B.1 spread between late January and early February 2020, from China to Veneto and Lombardy, respectively. Lineage B.1.1 (20B) most probably evolved within Italy and spread from central to south Italian regions, and to European countries. The lineage B.1.1.1 (20D) developed most probably in other European countries entering Italy only in the second half of March and remained localized in Piedmont until June 2020. In conclusion, within the limitations of phylogeographical reconstruction, the estimated ancestral scenario suggests an important role of China and Italy in the widespread diffusion of the D614G variant in Europe in the early phase of the pandemic and more dispersed exchanges involving several European countries from the second half of March 2020.

COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Communicable Disease Control , Europe/epidemiology , Genome, Viral/genetics , Humans , Italy/epidemiology , Phylogeography , SARS-CoV-2/genetics