Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
Nat Commun ; 13(1): 3840, 2022 Jul 04.
Article in English | MEDLINE | ID: covidwho-1915272

ABSTRACT

Emerging SARS-CoV-2 variants raise questions about escape from previous immunity. As the population immunity to SARS-CoV-2 has become more complex due to prior infections with different variants, vaccinations or the combination of both, understanding the antigenic relationship between variants is needed. Here, we have assessed neutralizing capacity of 120 blood specimens from convalescent individuals infected with ancestral SARS-CoV-2, Alpha, Beta, Gamma or Delta, double vaccinated individuals and patients after breakthrough infections with Delta or Omicron-BA.1. Neutralization against seven authentic SARS-CoV-2 isolates (B.1, Alpha, Beta, Gamma, Delta, Zeta and Omicron-BA.1) determined by plaque-reduction neutralization assay allowed us to map the antigenic relationship of SARS-CoV-2 variants. Highest neutralization titers were observed against the homologous variant. Antigenic cartography identified Zeta and Omicron-BA.1 as separate antigenic clusters. Substantial immune escape in vaccinated individuals was detected for Omicron-BA.1 but not Zeta. Combined infection/vaccination derived immunity results in less Omicron-BA.1 immune escape. Last, breakthrough infections with Omicron-BA.1 lead to broadly neutralizing sera.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies , COVID-19/prevention & control , Humans , Vaccination
2.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-338388

ABSTRACT

Background: We evaluate the diagnostic performance of dried blood microsampling combined with a high-throughput microfluidic nano-immunoassay (NIA) for the identification of anti-SARS-CoV-2 Spike IgG seropositivity. Methods: We conducted a serological study among 192 individuals with documented prior SARS-CoV- 2 infection and 44 SARS-CoV-2 negative individuals. Participants with prior SARS-CoV-2 infection had a long interval of 11 months since their qRT-PCR positive test. Serum was obtained after venipuncture and tested with an automated electrochemiluminescence anti-SARS-CoV-2 S total Ig reference assay, a commercial ELISA anti-S1 IgG assay, and the index test NIA. 109 participants from the positive co- hort and 44 participants from the negative cohort also participated in capillary blood collection using three microsampling devices: Mitra, repurposed glucose test strips, and HemaXis. Samples were dried, shipped by regular mail, extracted, and measured with NIA. Findings: Using serum samples, we achieve a clinical sensitivity of 98.33% and specificity of 97.62% on NIA, affirming the high performance of NIA in participants 11 months post infection. Combining microsampling with NIA, we obtain a clinical sensitivity of 95.05% using Mitra, 61.11% using glucose test strips, 83.16% using HemaXis, and 91.49% for HemaXis after automated extraction, without any drop in specificity. Interpretation: High sensitivity and specificity was demonstrated when testing micro-volume capillary dried blood samples using NIA, which is expected to facilitate its use in large-scale studies using home- based sampling or samples collected in the field. Funding: Swiss National Science Foundation NRP 78 Covid-19 grant 198412 and Private Foundation of the Geneva University Hospital.

3.
Eur J Clin Invest ; : e13818, 2022 May 22.
Article in English | MEDLINE | ID: covidwho-1861301

ABSTRACT

BACKGROUND: SARS-CoV-2 infection triggers different auto-antibodies, including anti-apolipoprotein A-1 IgGs (AAA1), which could be of concern as mediators of persistent symptoms. We determined the kinetics of AAA1 response over after COVID-19 and the impact of AAA1 on the inflammatory response and symptoms persistence. METHODS: All serologies were assessed at one, three, six and twelve months in 193 hospital employees with COVID-19. ROC curve analyses and logistic regression models (LRM) were used to determine the prognostic accuracy of AAA1 and their association with patient-reported COVID-19 symptoms persistence at 12 months. Interferon (IFN)-α and-γ production by AAA1-stimulated human monocyte-derived macrophages (HMDM) was assessed in vitro. RESULTS: AAA1 seropositivity was 93% at one month and declined to 15% at 12 months after COVID-19. Persistent symptoms at 12 months were observed in 45.1% of participants, with a predominance of neurological (28.5%), followed by general (15%) and respiratory symptoms (9.3%). Over time, strength of correlations between AAA1 and anti-SARS-COV2 serologies decreased, but remained significant. From the 3rd month on, AAA1 levels predicted persistent respiratory symptoms (area under the curves 0.72-0.74; p < 0.001), independently of disease severity, age and gender (adjusted odds ratios 4.81-4.94; p = 0.02), while anti-SARS-CoV-2 serologies did not. AAA1 increased IFN-α production by HMDMs (p = 0.03), without affecting the IFN-γ response. CONCLUSION: COVID-19 induces a marked though transient AAA1 response, independently predicting one-year persistence of respiratory symptoms. By increasing IFN-α response, AAA1 may contribute to persistent symptoms. If and how AAA1 levels assessment could be of use for COVID-19 risk stratification remains to be determined.

4.
Front Immunol ; 13: 841009, 2022.
Article in English | MEDLINE | ID: covidwho-1855352

ABSTRACT

Objective: To comprehensively evaluate SARS-CoV-2 specific B-cell and antibody responses up to one year after mild COVID-19. Methods: In 31 mildly symptomatic COVID-19 participants SARS-CoV-2-specific plasmablasts and antigen-specific memory B cells were measured by ELISpot. Binding antibodies directed against the proteins spike (S), domain S1, and nucleocapsid (N) were estimated using rIFA, ELISA, and commercially available assays, and avidity measured using thiocyanate washout. Neutralizing antibodies against variants of concern were measured using a surrogate-neutralization test. Results: Plasmablast responses were assessed in all participants who gave sequential samples during the first two weeks after infection; they preceded the rise in antibodies and correlated with antibody titers measured at one month. S1 and N protein-specific IgG memory B-cell responses remained stable during the first year, whereas S1-specific IgA memory B-cell responses declined after 6 months. Antibody titers waned over time, whilst potent affinity maturation was observed for anti-RBD antibodies. Neutralizing antibodies against wild-type (WT) and variants decayed during the first 6 months but titers significantly increased for Alpha, Gamma and Delta between 6 months and one year. Therefore, near-similar titers were observed for WT and Alpha after one year, and only slightly lower antibody levels for the Delta variant compared to WT. Anti-RBD antibody responses correlated with the neutralizing antibody titers at all time points, however the predicted titers were 3-fold lower at one year compared to one month. Conclusion: In mild COVID-19, stable levels of SARS-CoV-2 specific memory B cells and antibodies neutralizing current variants of concern are observed up to one year post infection. Care should be taken when predicting neutralizing titers using commercial assays that measure binding antibodies.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , Humans , Spike Glycoprotein, Coronavirus
5.
Epidemics ; 39: 100572, 2022 06.
Article in English | MEDLINE | ID: covidwho-1821233

ABSTRACT

Serosurveys are an important tool to estimate the true extent of the current SARS-CoV-2 pandemic. So far, most serosurvey data have been analyzed with cutoff-based methods, which dichotomize individual measurements into sero-positives or negatives based on a predefined cutoff. However, mixture model methods can gain additional information from the same serosurvey data. Such methods refrain from dichotomizing individual values and instead use the full distribution of the serological measurements from pre-pandemic and COVID-19 controls to estimate the cumulative incidence. This study presents an application of mixture model methods to SARS-CoV-2 serosurvey data from the SEROCoV-POP study from April and May 2020 in Geneva (2766 individuals). Besides estimating the total cumulative incidence in these data (8.1% (95% CI: 6.8%-9.9%)), we applied extended mixture model methods to estimate an indirect indicator of disease severity, which is the fraction of cases with a distribution of antibody levels similar to hospitalized COVID-19 patients. This fraction is 51.2% (95% CI: 15.2%-79.5%) across the full serosurvey, but differs between three age classes: 21.4% (95% CI: 0%-59.6%) for individuals between 5 and 40 years old, 60.2% (95% CI: 21.5%-100%) for individuals between 41 and 65 years old and 100% (95% CI: 20.1%-100%) for individuals between 66 and 90 years old. Additionally, we find a mismatch between the inferred negative distribution of the serosurvey and the validation data of pre-pandemic controls. Overall, this study illustrates that mixture model methods can provide additional insights from serosurvey data.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , COVID-19/epidemiology , Humans , Pandemics , Seroepidemiologic Studies , Young Adult
6.
Nat Med ; 28(7): 1491-1500, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1784006

ABSTRACT

Infectious viral load (VL) expelled as droplets and aerosols by infected individuals partly determines transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). RNA VL measured by qRT-PCR is only a weak proxy for infectiousness. Studies on the kinetics of infectious VL are important to understand the mechanisms behind the different transmissibility of SARS-CoV-2 variants and the effect of vaccination on transmission, which allows guidance of public health measures. In this study, we quantified infectious VL in individuals infected with SARS-CoV-2 during the first five symptomatic days by in vitro culturability assay in unvaccinated or vaccinated individuals infected with pre-variant of concern (pre-VOC) SARS-CoV-2, Delta or Omicron BA.1. Unvaccinated individuals infected with pre-VOC SARS-CoV-2 had lower infectious VL than Delta-infected unvaccinated individuals. Full vaccination (defined as >2 weeks after receipt of the second dose during the primary vaccination series) significantly reduced infectious VL for Delta breakthrough cases compared to unvaccinated individuals. For Omicron BA.1 breakthrough cases, reduced infectious VL was observed only in boosted but not in fully vaccinated individuals compared to unvaccinated individuals. In addition, infectious VL was lower in fully vaccinated Omicron BA.1-infected individuals compared to fully vaccinated Delta-infected individuals, suggesting that mechanisms other than increased infectious VL contribute to the high infectiousness of SARS-CoV-2 Omicron BA.1. Our findings indicate that vaccines may lower transmission risk and, therefore, have a public health benefit beyond the individual protection from severe disease.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Serologic Tests , Viral Load
7.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-309490

ABSTRACT

Background: SARS-CoV-2 infection leads to high viral loads in the upper respiratory tract that may be determinant in virus dissemination. The extent of intranasal antiviral response in relation to symptoms is unknown. Understanding how local innate responses control virus is key in the development of therapeutic approaches.MethodsSARS-CoV-2-infected patients were enrolled in an observational study conducted at the Geneva University Hospitals, Switzerland, investigating virological and immunological characteristics. Nasal-wash and serum specimens from a subset of patients were collected to measure viral load and a cytokine panel at different time points after infection;cytokine levels were analyzed in relation to symptoms.ResultsSamples from 13 SARS-CoV-2-infected patients and six controls were analyzed. We found an increase in CXCL10 and IL-6, whose levels remained elevated for up to 3 weeks after symptom onset. SARS-CoV-2 infection also induced CCL2 and GM-CSF, suggesting local recruitment and activation of myeloid cells. Local cytokine levels correlated with viral load but not with serum cytokine levels, nor with specific symptoms, including anosmia.ConclusionsThe nasal epithelium is an active site of cytokine response against SARS-CoV-2 that can last more than 2 weeks;in this cohort, anosmia was not associated with increases in any locally produced cytokines.

8.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-314781

ABSTRACT

Background: Since the beginning of the COVID-19 pandemic, no direct antiviral treatment is effective as post-exposure prophylaxis (PEP). Lopinavir/ritonavir (LPV/r) was repurposed as a potential PEP agent against COVID-19.Methods: We conducted a pragmatic open-label, parallel, cluster-randomized superiority trial in four sites in Switzerland and Brazil. Clusters were randomized to receive LPV/r PEP (400/100 mg) twice daily for 5 days or no PEP (surveillance). The primary outcome is the occurrence of COVID-19 within 21 days post-enrollment.Findings: Of 318 participants, 157 (49.4%) were women, median age was 39 (interquartile range, 28-50) years. A total of 209 (179 clusters) participants were randomized to LPV/r PEP and 109 (95 clusters) to surveillance. Baseline characteristics were similar, with the exception of baseline SARS-CoV-2 PCR positivity, which was 3-fold more frequent in the LPV/r arm (34/209 [16.3%] vs 6/109 [5.5%], respectively). During 21-day follow-up, 48/318 (15.1%) participants developed COVID-19: 35/209 (16.7%) in the LPV/r group and 13/109 (11.9%) in the surveillance group (unadjusted hazard ratio 1.44;95% CI, 0.76 to 2.73). In the primary endpoint analysis adjusted for propensity score to receive LPV/r, the hazard ratio for developing COVID-19 in the LPV/r group vs surveillance was 0.53 (95% CI, 0.23 to 1.23, respectively;P =.14).Interpretation: LPV/r role as PEP for COVID-19 remains unanswered. In this trial, LPV/r over 5 days did not significantly reduce incidence of COVID-19 in exposed individuals. We observed a change in directionality of the effect in favor of LPV/r after adjusting for baseline SARS-CoV-2 PCR results, indicating a potential role of antivirals in COVID-19 prevention.Clinical Trial Registration Details: ClinicalTrials.gov (Identifier: NCT04364022);Swiss National Clinical Trial Portal: SNCTP 000003732.Funding Information: Fondation privée des HUG and Swiss National Fund (project number: 33IC30_166819).Declaration of Interests: None reported.Ethics Approval Statement: The protocol and amendments were approved by Swissmedic and local ethics committees in Switzerland and Brazil. Participants provided written informed consent before study entry.

9.
Nature ; 602(7896): 307-313, 2022 02.
Article in English | MEDLINE | ID: covidwho-1585832

ABSTRACT

Emerging variants of concern (VOCs) are driving the COVID-19 pandemic1,2. Experimental assessments of replication and transmission of major VOCs and progenitors are needed to understand the mechanisms of replication and transmission of VOCs3. Here we show that the spike protein (S) from Alpha (also known as B.1.1.7) and Beta (B.1.351) VOCs had a greater affinity towards the human angiotensin-converting enzyme 2 (ACE2) receptor than that of the progenitor variant S(D614G) in vitro. Progenitor variant virus expressing S(D614G) (wt-S614G) and the Alpha variant showed similar replication kinetics in human nasal airway epithelial cultures, whereas the Beta variant was outcompeted by both. In vivo, competition experiments showed a clear fitness advantage of Alpha over wt-S614G in ferrets and two mouse models-the substitutions in S were major drivers of the fitness advantage. In hamsters, which support high viral replication levels, Alpha and wt-S614G showed similar fitness. By contrast, Beta was outcompeted by Alpha and wt-S614G in hamsters and in mice expressing human ACE2. Our study highlights the importance of using multiple models to characterize fitness of VOCs and demonstrates that Alpha is adapted for replication in the upper respiratory tract and shows enhanced transmission in vivo in restrictive models, whereas Beta does not overcome Alpha or wt-S614G in naive animals.


Subject(s)
COVID-19/transmission , COVID-19/virology , Mutation , SARS-CoV-2/classification , SARS-CoV-2/physiology , Virus Replication , Amino Acid Substitution , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Animals , Animals, Laboratory/virology , COVID-19/veterinary , Cricetinae , Disease Models, Animal , Epithelial Cells/virology , Female , Ferrets/virology , Humans , Male , Mesocricetus/virology , Mice , Mice, Transgenic , SARS-CoV-2/genetics , SARS-CoV-2/growth & development , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Virulence/genetics
10.
J Clin Med ; 10(8)2021 Apr 10.
Article in English | MEDLINE | ID: covidwho-1526830

ABSTRACT

PURPOSE: To assess the diagnostic performances of five automated anti-SARS-CoV-2 immunoassays, Epitope (N), Diasorin (S1/S2), Euroimmun (S1), Roche N (N), and Roche S (S-RBD), and to provide a testing strategy based on pre-test probability. METHODS: We assessed the receiver operating characteristic (ROC) areas under the curve (AUC) values, along with the sensitivity, specificity, positive predictive values (PPVs), and negative predictive values (NPVs), of each assay using a validation sample set of 172 COVID-19 sera and 185 negative controls against a validated S1-immunofluorescence as a reference method. The three assays displaying the highest AUCs were selected for further serodetection of 2033 sera of a large population-based cohort. RESULTS: In the validation analysis (pre-test probability: 48.1%), Roche N, Roche S and Euroimmun showed the highest discriminant accuracy (AUCs: 0.99, 0.98, and 0.98) with PPVs and NPVs above 96% and 94%, respectively. In the population-based cohort (pre-test probability: 6.2%) these three assays displayed AUCs above 0.97 and PPVs and NPVs above 90.5% and 99.4%, respectively. A sequential strategy using an anti-S assay as screening test and an anti-N as confirmatory assays resulted in a 96.7% PPV and 99.5% NPV, respectively. CONCLUSIONS: Euroimmun and both Roche assays performed equally well in high pre-test probability settings. At a lower prevalence, sequentially combining anti-S and anti-N assays resulted in the optimal trade-off between diagnostic performances and operational considerations.

11.
J Clin Immunol ; 41(8): 1723-1732, 2021 11.
Article in English | MEDLINE | ID: covidwho-1525557

ABSTRACT

BACKGROUND: SARS-CoV-2 infection leads to high viral loads in the upper respiratory tract that may be determinant in virus dissemination. The extent of intranasal antiviral response in relation to symptoms is unknown. Understanding how local innate responses control virus is key in the development of therapeutic approaches. METHODS: SARS-CoV-2-infected patients were enrolled in an observational study conducted at the Geneva University Hospitals, Switzerland, investigating virological and immunological characteristics. Nasal wash and serum specimens from a subset of patients were collected to measure viral load, IgA specific for the S1 domain of the spike protein, and a cytokine panel at different time points after infection; cytokine levels were analyzed in relation to symptoms. RESULTS: Samples from 13 SARS-CoV-2-infected patients and six controls were analyzed. We found an increase in CXCL10 and IL-6, whose levels remained elevated for up to 3 weeks after symptom onset. SARS-CoV-2 infection also induced CCL2 and GM-CSF, suggesting local recruitment and activation of myeloid cells. Local cytokine levels correlated with viral load but not with serum cytokine levels, nor with specific symptoms, including anosmia. Some patients had S1-specific IgA in the nasal cavity while almost none had IgG. CONCLUSION: The nasal epithelium is an active site of cytokine response against SARS-CoV-2 that can last more than 2 weeks; in this mild COVID-19 cohort, anosmia was not associated with increases in any locally produced cytokines.


Subject(s)
COVID-19/immunology , Cytokines/biosynthesis , Inflammation/etiology , Nasal Mucosa/immunology , SARS-CoV-2 , Viral Load , Adult , Aged , Antibodies, Viral , COVID-19/virology , Female , Humans , Longitudinal Studies , Male , Middle Aged , Prospective Studies , SARS-CoV-2/immunology
12.
EClinicalMedicine ; 42: 101188, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1499828

ABSTRACT

BACKGROUND: Since the beginning of the COVID-19 pandemic, no direct antiviral treatment is effective as post-exposure prophylaxis (PEP). Lopinavir/ritonavir (LPV/r) was repurposed as a potential PEP agent against COVID-19. METHODS: We conducted a pragmatic open-label, parallel, cluster-randomised superiority trial in four sites in Switzerland and Brazil between March 2020 to March 2021. Clusters were randomised to receive LPV/r PEP (400/100 mg) twice daily for 5 days or no PEP (surveillance). Exposure to SARS-CoV-2 was defined as a close contact of >15 minutes in <2 metres distance or having shared a closed space for ≥2 hours with a person with confirmed SARS-CoV-2 infection. The primary outcome is the occurrence of COVID-19 defined by a SARS-CoV-2 infection (positive oropharyngeal SARS-CoV-2 PCR and/or a seroconversion) and ≥1 compatible symptom within 21 days post-enrolment. ClinicalTrials.gov (Identifier: NCT04364022); Swiss National Clinical Trial Portal: SNCTP 000003732. FINDINGS: Of 318 participants, 157 (49.4%) were women; median age was 39 (interquartile range, 28-50) years. A total of 209 (179 clusters) participants were randomised to LPV/r PEP and 109 (95 clusters) to surveillance. Baseline characteristics were similar, with the exception of baseline SARS-CoV-2 PCR positivity, which was 3-fold more frequent in the LPV/r arm (34/209 [16.3%] vs 6/109 [5.5%], respectively). During 21-day follow-up, 48/318 (15.1%) participants developed COVID-19: 35/209 (16.7%) in the LPV/r group and 13/109 (11.9%) in the surveillance group (unadjusted hazard ratio 1.44; 95% CI, 0.76-2.73). In the primary endpoint analysis, which was adjuted for baseline imbalance, the hazard ratio for developing COVID-19 in the LPV/r group vs surveillance was 0.60 (95% CI, 0.29-1.26; p =0.18). INTERPRETATION: The role of LPV/r as PEP for COVID-19 remains unanswered. Although LPV/r over 5 days did not significantly reduce the incidence of COVID-19 in exposed individuals, we observed a change in the directionality of the effect in favour of LPV/r after adjusting for baseline imbalance. LPV/r for this indication merits further testing against SARS-CoV-2 in clinical trials. FUNDING: Swiss National Science Foundation (project no.: 33IC30_166819) and the Private Foundation of Geneva University Hospitals (Edmond Rothschild (Suisse) SA, Union Bancaire Privée and the Fondation pour la recherche et le traitement médical).

13.
Cell Rep ; 37(1): 109773, 2021 10 05.
Article in English | MEDLINE | ID: covidwho-1442298

ABSTRACT

SARS-CoV-2 infection in children is less severe than it is in adults. We perform a longitudinal analysis of the early innate responses in children and adults with mild infection within household clusters. Children display fewer symptoms than adults do, despite similar initial viral load, and mount a robust anti-viral immune signature typical of the SARS-CoV-2 infection and characterized by early interferon gene responses; increases in cytokines, such as CXCL10 and GM-CSF; and changes in blood cell numbers. When compared with adults, the antiviral response resolves faster (within a week of symptoms), monocytes and dendritic cells are more transiently activated, and genes associated with B cell activation appear earlier in children. Nonetheless, these differences do not have major effects on the quality of SARS-CoV-2-specific antibody responses. Our findings reveal that better early control of inflammation as observed in children may be key for rapidly controlling infection and limiting the disease course.


Subject(s)
Antibodies, Viral/immunology , COVID-19/genetics , COVID-19/immunology , Cytokines/metabolism , Immunity, Innate , SARS-CoV-2/immunology , Transcriptome , Adaptive Immunity , Adolescent , Adult , B-Lymphocytes/metabolism , COVID-19/virology , Chemokine CXCL10/metabolism , Child , Child, Preschool , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Humans , Infant , Inflammation/virology , Interferons/metabolism , Longitudinal Studies , Middle Aged , Monocytes/metabolism , Sequence Analysis, RNA , Viral Load , Young Adult
14.
Eur J Clin Invest ; 51(11): e13661, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1398398

ABSTRACT

BACKGROUND: Unravelling autoimmune targets triggered by SARS-CoV-2 infection may provide crucial insights into the physiopathology of the disease and foster the development of potential therapeutic candidate targets and prognostic tools. We aimed at determining (a) the association between anti-SARS-CoV-2 and anti-apoA-1 humoral response and (b) the degree of linear homology between SARS-CoV-2, apoA-1 and Toll-like receptor 2 (TLR2) epitopes. DESIGN: Bioinformatics modelling coupled with mimic peptides engineering and competition experiments were used to assess epitopes sequence homologies. Anti-SARS-CoV-2 and anti-apoA-1 IgG as well as cytokines were assessed by immunoassays on a case-control (n = 101), an intensive care unit (ICU; n = 126) and a general population cohort (n = 663) with available samples in the pre and post-pandemic period. RESULTS: Using bioinformatics modelling, linear sequence homologies between apoA-1, TLR2 and Spike epitopes were identified but without experimental evidence of cross-reactivity. Overall, anti-apoA-1 IgG levels were higher in COVID-19 patients or anti-SARS-CoV-2 seropositive individuals than in healthy donors or anti-SARS-CoV-2 seronegative individuals (P < .0001). Significant and similar associations were noted between anti-apoA-1, anti-SARS-CoV-2 IgG, cytokines and lipid profile. In ICU patients, anti-SARS-CoV-2 and anti-apoA-1 seroconversion rates displayed similar 7-day kinetics, reaching 82% for anti-apoA-1 seropositivity. In the general population, SARS-CoV-2-exposed individuals displayed higher anti-apoA-1 IgG seropositivity rates than nonexposed ones (34% vs 16.8%; P = .004). CONCLUSION: COVID-19 induces a marked humoral response against the major protein of high-density lipoproteins. As a correlate of poorer prognosis in other clinical settings, such autoimmunity signatures may relate to long-term COVID-19 prognosis assessment and warrant further scrutiny in the current COVID-19 pandemic.


Subject(s)
Antibodies, Viral/immunology , Apolipoprotein A-I/immunology , Autoantibodies/immunology , COVID-19/immunology , Cytokines/immunology , Immunity, Humoral/immunology , Spike Glycoprotein, Coronavirus/immunology , Adult , Aged , Aged, 80 and over , Apolipoprotein A-I/chemistry , Computational Biology , Epitopes/chemistry , Female , Humans , Immunoglobulin G/immunology , Male , Middle Aged , Peptide Fragments/chemistry , Peptide Fragments/immunology , Peptides , SARS-CoV-2 , Sequence Homology, Amino Acid , Spike Glycoprotein, Coronavirus/chemistry , Toll-Like Receptor 2/chemistry , Toll-Like Receptor 2/immunology , Young Adult
15.
Lancet Reg Health Eur ; 4: 100115, 2021 May.
Article in English | MEDLINE | ID: covidwho-1386169
16.
Clin Microbiol Infect ; 27(11): 1695.e7-1695.e12, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1300726

ABSTRACT

OBJECTIVES: Serological studies have been critical in tracking the evolution of the COVID-19 pandemic. Data on anti-SARS-CoV-2 antibodies persistence remain sparse, especially from infected individuals with few to no symptoms. The objective of the study was to quantify the sensitivity for detecting historic SARS-CoV-2 infections as a function of time since infection for three commercially available SARS-CoV-2 immunoassays and to explore the implications of decaying immunoassay sensitivity in estimating seroprevalence. METHODS: We followed a cohort of mostly mild/asymptomatic SARS-CoV-2-infected individuals (n = 354) at least 8 months after their presumed infection date and tested their serum for anti-SARS-CoV-2 antibodies with three commercially available assays: Roche-N, Roche-RBD and EuroImmun-S1. We developed a latent class statistical model to infer the specificity and time-varying sensitivity of each assay and show through simulations how inappropriately accounting for test performance can lead to biased serosurvey estimates. RESULTS: Antibodies were detected at follow-up in 74-100% of participants, depending on immunoassays. Both Roche assays maintain high sensitivity, with the EuroImmun assay missing 40% of infections after 9 months. Simulations reveal that without appropriate adjustment for time-varying assay sensitivity, seroprevalence surveys may underestimate infection rates. DISCUSSION: Antibodies persist for at least 8 months after infection in a cohort of mildly infected individuals with detection depending on assay choice. Appropriate assay performance adjustment is important for the interpretation of serological studies in the case of diminishing sensitivity after infection.


Subject(s)
Antibodies, Viral/blood , COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19/immunology , Humans , Immunoassay , Pandemics , SARS-CoV-2/immunology , Sensitivity and Specificity , Seroepidemiologic Studies
17.
J Clin Invest ; 131(13)2021 07 01.
Article in English | MEDLINE | ID: covidwho-1291316

ABSTRACT

BACKGROUNDAlthough convalescent plasma has been widely used to treat severe coronavirus disease 2019 (COVID-19), data from randomized controlled trials that support its efficacy are limited.METHODSWe conducted a randomized, double-blind, controlled trial among adults hospitalized with severe and critical COVID-19 at 5 sites in New York City (USA) and Rio de Janeiro (Brazil). Patients were randomized 2:1 to receive a single transfusion of either convalescent plasma or normal control plasma. The primary outcome was clinical status at 28 days following randomization, measured using an ordinal scale and analyzed using a proportional odds model in the intention-to-treat population.RESULTSOf 223 participants enrolled, 150 were randomized to receive convalescent plasma and 73 to receive normal control plasma. At 28 days, no significant improvement in the clinical scale was observed in participants randomized to convalescent plasma (OR 1.50, 95% confidence interval [CI] 0.83-2.68, P = 0.180). However, 28-day mortality was significantly lower in participants randomized to convalescent plasma versus control plasma (19/150 [12.6%] versus 18/73 [24.6%], OR 0.44, 95% CI 0.22-0.91, P = 0.034). The median titer of anti-SARS-CoV-2 neutralizing antibody in infused convalescent plasma units was 1:160 (IQR 1:80-1:320). In a subset of nasopharyngeal swab samples from Brazil that underwent genomic sequencing, no evidence of neutralization-escape mutants was detected.CONCLUSIONIn adults hospitalized with severe COVID-19, use of convalescent plasma was not associated with significant improvement in day 28 clinical status. However, convalescent plasma was associated with significantly improved survival. A possible explanation is that survivors remained hospitalized at their baseline clinical status.TRIAL REGISTRATIONClinicalTrials.gov, NCT04359810.FUNDINGAmazon Foundation, Skoll Foundation.


Subject(s)
COVID-19/therapy , SARS-CoV-2 , Adult , Aged , Aged, 80 and over , Brazil/epidemiology , COVID-19/immunology , COVID-19/mortality , Double-Blind Method , Female , Humans , Immunization, Passive , Kaplan-Meier Estimate , Male , Middle Aged , New York City/epidemiology , Pandemics , SARS-CoV-2/immunology , Severity of Illness Index , Treatment Outcome
18.
Proc Natl Acad Sci U S A ; 118(18)2021 05 04.
Article in English | MEDLINE | ID: covidwho-1220061

ABSTRACT

Novel technologies are needed to facilitate large-scale detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) specific antibodies in human blood samples. Such technologies are essential to support seroprevalence studies and vaccine clinical trials, and to monitor quality and duration of immunity. We developed a microfluidic nanoimmunoassay (NIA) for the detection of anti-SARS-CoV-2 IgG antibodies in 1,024 samples per device. The method achieved a specificity of 100% and a sensitivity of 98% based on the analysis of 289 human serum samples. To eliminate the need for venipuncture, we developed low-cost, ultralow-volume whole blood sampling methods based on two commercial devices and repurposed a blood glucose test strip. The glucose test strip permits the collection, shipment, and analysis of 0.6 µL of whole blood easily obtainable from a simple finger prick. The NIA platform achieves high throughput, high sensitivity, and specificity based on the analysis of 289 human serum samples, and negligible reagent consumption. We furthermore demonstrate the possibility to combine NIA with decentralized and simple approaches to blood sample collection. We expect this technology to be applicable to current and future SARS-CoV-2 related serological studies and to protein biomarker analysis in general.


Subject(s)
Antibodies, Viral/blood , COVID-19 Serological Testing/methods , COVID-19/diagnosis , SARS-CoV-2/isolation & purification , COVID-19/blood , COVID-19 Serological Testing/economics , Dried Blood Spot Testing , High-Throughput Screening Assays/economics , Humans , Immunoassay/economics , Immunoglobulin G/blood , Microfluidic Analytical Techniques/economics , Reproducibility of Results , SARS-CoV-2/immunology , Sensitivity and Specificity , Specimen Handling
19.
Infect Control Hosp Epidemiol ; 43(3): 326-333, 2022 03.
Article in English | MEDLINE | ID: covidwho-1199239

ABSTRACT

BACKGROUND: The dynamics of coronavirus disease 2019 (COVID-19) seroconversion of hospital employees are understudied. We measured the proportion of seroconverted employees and evaluated risk factors for seroconversion during the first pandemic wave. METHODS: In this prospective cohort study, we recruited Geneva University Hospitals employees and sampled them 3 times, every 3 weeks from March 30 to June 12, 2020. We measured the proportion of seroconverted employees and determined prevalence ratios of risk factors for seroconversion using multivariate mixed-effects Poisson regression models. RESULTS: Overall, 3,421 participants (29% of all employees) were included, with 92% follow-up. The proportion of seroconverted employees increased from 4.4% (95% confidence interval [CI], 3.7%-5.1%) at baseline to 8.5% [(95% CI, 7.6%-9.5%) at the last visit. The proportions of seroconverted employees working in COVID-19 geriatrics and rehabilitation (G&R) wards (32.3%) and non-COVID-19 G&R wards (12.3%) were higher compared to office workers (4.9%) at the last visit. Only nursing assistants had a significantly higher risk of seroconversion compared to office workers (11.7% vs 4.9%; P = .006). Significant risk factors for seroconversion included the use of public transportation (adjusted prevalence ratio, 1.59; 95% CI, 1.25-2.03), known community exposure to severe acute respiratory coronavirus virus 2 (2.80; 95% CI, 2.22-3.54), working in a ward with a nosocomial COVID outbreak (2.93; 95% CI, 2.27-3.79), and working in a COVID-19 G&R ward (3.47; 95% CI, 2.45-4.91) or a non-COVID-19 G&R ward (1.96; 95% CI, 1.46-2.63). We observed an association between reported use of respirators and lower risk of seroconversion (0.73; 95% CI, 0.55-0.96). CONCLUSION: Additional preventive measures should be implemented to protect employees in G&R wards. Randomized trials on the protective effect of respirators are urgently needed.


Subject(s)
COVID-19 , Occupational Exposure , COVID-19/epidemiology , Cohort Studies , Hospitals, University , Humans , Longitudinal Studies , Occupational Exposure/adverse effects , Personnel, Hospital , Prospective Studies , SARS-CoV-2 , Seroconversion , Switzerland
20.
Clin Microbiol Infect ; 2021 Feb 20.
Article in English | MEDLINE | ID: covidwho-1146230

ABSTRACT

OBJECTIVES: To report a case of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) reinfection 6 months after the first infection in a young healthy female physician. Both episodes led to mild coronavirus disease 2019 (COVID-19). METHODS: SARS-CoV-2 infections were detected by real-time reverse transcriptase PCR (RT-PCR) on nasopharyngeal specimens. Reinfection was confirmed by whole-genome sequencing. Kinetics of total anti-S receptor binding domain immunoglobulins (Ig anti-S RBD), anti-nucleoprotein (anti-N) and neutralizing antibodies were determined in serial serum samples retrieved during both infection episodes. Memory B-cell responses were assessed at day 12 after reinfection. RESULTS: Whole-genome sequencing identified two different SARS-CoV-2 genomes both belonging to clade 20A, with only one nonsynonymous mutation in the spike protein and clustered with viruses circulating in Geneva (Switzerland) at the time of each of the corresponding episodes. Seroconversion was documented with low levels of total Ig anti-S RBD and anti-N antibodies at 1 month after the first infection, whereas neutralizing antibodies quickly declined after the first episode and then were boosted by the reinfection, with high titres detectable 4 days after symptom onset. A strong memory B-cell response was detected at day 12 after onset of symptoms during reinfection, indicating that the first episode elicited cellular memory responses. CONCLUSIONS: Rapid decline of neutralizing antibodies may put medical personnel at risk of reinfection, as shown in this case. However, reinfection leads to a significant boosting of previous immune responses. Larger cohorts of reinfected subjects with detailed descriptions of their immune responses are needed to define correlates of protection and their duration after infection.

SELECTION OF CITATIONS
SEARCH DETAIL