Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.12.23.424229

ABSTRACT

Monitoring the spread of SARS-CoV-2 and reconstructing transmission chains has become a major public health focus for many governments around the world. The modest mutation rate and rapid transmission of SARS-CoV-2 prevents the reconstruction of transmission chains from consensus genome sequences, but within-host genetic diversity could theoretically help identify close contacts. Here we describe the patterns of within-host diversity in 1,181 SARS-CoV-2 samples sequenced to high depth in duplicate. 95% of samples show within-host mutations at detectable allele frequencies. Analyses of the mutational spectra revealed strong strand asymmetries suggestive of damage or RNA editing of the plus strand, rather than replication errors, dominating the accumulation of mutations during the SARS-CoV-2 pandemic. Within and between host diversity show strong purifying selection, particularly against nonsense mutations. Recurrent within-host mutations, many of which coincide with known phylogenetic homoplasies, display a spectrum and patterns of purifying selection more suggestive of mutational hotspots than recombination or convergent evolution. While allele frequencies suggest that most samples result from infection by a single lineage, we identify multiple putative examples of co-infection. Integrating these results into an epidemiological inference framework, we find that while sharing of within-host variants between samples could help the reconstruction of transmission chains, mutational hotspots and rare cases of superinfection can confound these analyses.

2.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.08.26.20182279

ABSTRACT

Background COVID-19 poses a major challenge to infection control in care homes. SARS-CoV-2 is readily transmitted between people in close contact and causes disproportionately severe disease in older people. Methods Data and SARS-CoV-2 samples were collected from patients in the East of England (EoE) between 26th February and 10th May 2020. Care home residents were identified using address search terms and Care Quality Commission registration information. Samples were sequenced at the University of Cambridge or the Wellcome Sanger Institute and viral clusters defined based on genomic and time differences between cases. Findings 7,406 SARS-CoV-2 positive samples from 6,600 patients were identified, of which 1,167 (18.2%) were residents from 337 care homes. 30/71 (42.3%) care home residents tested at Cambridge University Hospitals NHS Foundation Trust (CUH) died. Genomes were available for 700/1,167 (60%) residents from 292 care homes, and 409 distinct viral clusters were defined. We identified several probable transmissions between care home residents and healthcare workers (HCW). Interpretation Care home residents had a significant burden of COVID-19 infections and high mortality. Larger viral clusters were consistent with within-care home transmission, while multiple clusters per care home suggested independent acquisitions.

SELECTION OF CITATIONS
SEARCH DETAIL