ABSTRACT
BACKGROUND: SARS-CoV-2 replicates efficiently in the upper airways of humans and produces high loads of virus RNA and, at least in the initial phase after infection, many infectious virus particles. Studying virus ultrastructure, such as particle integrity or presence of spike proteins, and effects on their host cells in patient samples is important to understand the pathogenicity of SARS-CoV-2. METHODS: Suspensions from swab samples with a high load of virus RNA (Ct < 20) were sedimented by desktop ultracentrifugation and prepared for thin section electron microscopy using a novel method which is described in detail. Embedding was performed in Epon or in LR White resin using standard or rapid protocols. Thin sections were examined using transmission electron microscopy. RESULTS: Virus particles could be regularly detected in the extracellular space, embedded in a background of heterogenous material (e.g. vesicles and needle-like crystals), and within ciliated cells. Morphology (i.e. shape, size, spike density) of virus particles in the swab samples was very similar to particle morphology in cell culture. However, in some of the samples the virus particles hardly revealed spikes. Infected ciliated cells occasionally showed replication organelles, such as double-membrane vesicles. The most common cells in all samples were keratinocytes from the mucosa and bacteria. CONCLUSIONS: The new method allows the ultrastructural visualization and analysis of coronavirus particles and of infected host cells from easy to collect naso/oropharyngeal patient swab samples.
Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Specimen Handling/methods , Microscopy, Electron, Transmission , RNAABSTRACT
BACKGROUND: Superspreading events are important drivers of the SARS-CoV-2 pandemic and long-range (LR) transmission is believed to play a major role. We investigated two choir outbreaks with different attack rates (AR) to analyze the contribution of LR transmission and highlight important measures for prevention. METHODS: We conducted two retrospective cohort studies and obtained demographic, clinical, laboratory and contact data, performed SARS-CoV-2 serology, whole genome sequencing (WGS), calculated LR transmission probabilities, measured particle emissions of selected choir members, and calculated particle air concentrations and inhalation doses. RESULTS: We included 65 (84%) and 42 (100%) members of choirs 1 and 2, respectively, of whom 58 (89%) and 10 (24%) became cases. WGS confirmed strain identity in both choirs. Both primary cases transmitted presymptomatically. Particle emission rate when singing was 7 times higher compared to talking. In choir 1, the median concentration of primary cases' emitted particles in the room was estimated to be 8 times higher, exposure at least 30 minutes longer and room volume smaller than in choir 2, resulting in markedly different estimated probabilities for LR transmission (mode: 90% vs. 16%, 95% CI: 80-95% vs. 6-36%). According to a risk model, the first transmission in choir 1 occurred likely after 8 minutes of singing. CONCLUSIONS: The attack rate of the two choirs differed significantly reflecting the differences in LR transmission risks. The pooled proportion of cases due to LR transmission was substantial (81%; 55/68 cases) and was facilitated by likely highly infectious primary cases, high particle emission rates, and indoor rehearsing for an extended time. Even in large rooms, singing of an infectious person may lead to secondary infections through LR exposure within minutes. In the context of indoor gatherings without mask-wearing and waning or insufficient immunity, these results highlight the ongoing importance of non-pharmaceutical interventions wherever aerosols can accumulate.
Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Berlin , Retrospective Studies , COVID-19/epidemiology , Disease Outbreaks , Germany/epidemiologyABSTRACT
Pre-vaccine SARS-CoV-2 seroprevalence data from Germany are scarce outside hotspots, and socioeconomic disparities remained largely unexplored. The nationwide representative RKI-SOEP study (15,122 participants, 18-99 years, 54% women) investigated seroprevalence and testing in a supplementary wave of the Socio-Economic-Panel conducted predominantly in October-November 2020. Self-collected oral-nasal swabs were PCR-positive in 0.4% and Euroimmun anti-SARS-CoV-2-S1-IgG ELISA from dry-capillary-blood antibody-positive in 1.3% (95% CI 0.9-1.7%, population-weighted, corrected for sensitivity = 0.811, specificity = 0.997). Seroprevalence was 1.7% (95% CI 1.2-2.3%) when additionally correcting for antibody decay. Overall infection prevalence including self-reports was 2.1%. We estimate 45% (95% CI 21-60%) undetected cases and lower detection in socioeconomically deprived districts. Prior SARS-CoV-2 testing was reported by 18% from the lower educational group vs. 25% and 26% from the medium and high educational group (p < 0.001, global test over three categories). Symptom-triggered test frequency was similar across educational groups. Routine testing was more common in low-educated adults, whereas travel-related testing and testing after contact with infected persons was more common in highly educated groups. This countrywide very low pre-vaccine seroprevalence in Germany at the end of 2020 can serve to evaluate the containment strategy. Our findings on social disparities indicate improvement potential in pandemic planning for people in socially disadvantaged circumstances.
Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Adult , Female , Male , Seroepidemiologic Studies , COVID-19 Testing , Travel , COVID-19/diagnosis , COVID-19/epidemiology , Travel-Related Illness , Antibodies, Viral , Immunoglobulin GABSTRACT
The SARS-CoV-2 coronavirus has spread rapidly across Germany. Infections are likely to be under-recorded in the notification data from local health authorities on laboratory-confirmed cases since SARS-CoV-2 infections can proceed with few symptoms and then often remain undetected. Seroepidemiological studies allow the estimation of the proportion in the population that has been infected with SARS-CoV-2 (seroprevalence) as well as the extent of undetected infections. The 'CORONA-MONITORING bundesweit' study (RKI-SOEP study) collects biospecimens and interview data in a nationwide population sample drawn from the German Socio-Economic Panel (SOEP). Participants are sent materials to self-collect a dry blood sample of capillary blood from their finger and a swab sample from their mouth and nose, as well as a questionnaire. The samples returned are tested for SARS-CoV-2 IgG antibodies and SARS-CoV-2 RNA to identify past or present infections. The methods applied enable the identification of SARS-CoV-2 infections, including those that previously went undetected. In addition, by linking the data collected with available SOEP data, the study has the potential to investigate social and health-related differences in infection status. Thus, the study contributes to an improved understanding of the extent of the epidemic in Germany, as well as identification of target groups for infection protection.
ABSTRACT
SARS-CoV-2 is the causative of the COVID-19 disease, which has spread pandemically around the globe within a few months. It is therefore necessary to collect fundamental information about the disease, its epidemiology and treatment, as well as about the virus itself. While the virus has been identified rapidly, detailed ultrastructural analysis of virus cell biology and architecture is still in its infancy. We therefore studied the virus morphology and morphometry of SARS-CoV-2 in comparison to SARS-CoV as it appears in Vero cell cultures by using conventional thin section electron microscopy and electron tomography. Both virus isolates, SARS-CoV Frankfurt 1 and SARS-CoV-2 Italy-INMI1, were virtually identical at the ultrastructural level and revealed a very similar particle size distribution with a median of about 100 nm without spikes. Maximal spike length of both viruses was 23 nm. The number of spikes per virus particle was about 30% higher in the SARS-CoV than in the SARS-CoV-2 isolate. This result complements a previous qualitative finding, which was related to a lower productivity of SARS-CoV-2 in cell culture in comparison to SARS-CoV.
Subject(s)
SARS-CoV-2/ultrastructure , Virion/ultrastructure , Animals , Chlorocebus aethiops , Electron Microscope Tomography , Plastics , RNA, Viral , Vero Cells , Virus ReplicationABSTRACT
Three months after a coronavirus disease (COVID-19) outbreak in Kupferzell, Germany, a population-based study (n = 2,203) found no RT-PCR-positives. IgG-ELISA seropositivity with positive virus neutralisation tests was 7.7% (95% confidence interval (CI): 6.5-9.1) and 4.3% with negative neutralisation tests. We estimate 12.0% (95% CI: 10.4-14.0%) infected adults (24.5% asymptomatic), six times more than notified. Full hotspot containment confirms the effectiveness of prompt protection measures. However, 88% naïve adults are still at high COVID-19 risk.