Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
J Clin Med ; 11(9)2022 Apr 22.
Article in English | MEDLINE | ID: covidwho-1847351

ABSTRACT

The aim of the study was to validate the performance of the Optomed Aurora® handheld fundus camera in diabetic retinopathy (DR) screening. Patients who were affected by diabetes mellitus and referred to the local DR screening service underwent fundus photography using a standard table-top fundus camera and the Optomed Aurora® handheld fundus camera. All photos were taken by a single, previously unexperienced operator. Among 423 enrolled eyes, we found a prevalence of 3.55% and 3.31% referable cases with the Aurora® and with the standard table-top fundus camera, respectively. The Aurora® obtained a sensitivity of 96.9% and a specificity of 94.8% in recognizing the presence of any degree of DR, a sensitivity of 100% and a specificity of 99.8% for any degree of diabetic maculopathy (DM) and a sensitivity of 100% and specificity of 99.8% for referable cases. The overall concordance coefficient k (95% CI) was 0.889 (0.828-0.949) and 0.831 (0.658-1.004) with linear weighting for DR and DM, respectively. The presence of hypertensive retinopathy (HR) was recognized by the Aurora® with a sensitivity and specificity of 100%. The Optomed Aurora® handheld fundus camera proved to be effective in recognizing referable cases in a real-life DR screening setting. It showed comparable results to a standard table-top fundus camera in DR, DM and HR detection and grading. The Aurora® can be integrated into telemedicine solutions and artificial intelligence services which, in addition to its portability and ease of use, make it particularly suitable for DR screening.

2.
J Pers Med ; 12(4)2022 Apr 01.
Article in English | MEDLINE | ID: covidwho-1776272

ABSTRACT

A large spectrum of neurological manifestations has been associated with coronavirus disease 2019 (COVID-19), and recently, the involvement of small fibers has been suggested. This study aims to investigate the involvement of small peripheral nervous fibers in recovered COVID-19 patients using in-vivo corneal confocal microscopy (CCM). Patients recovered from COVID-19 and a control group of healthy subjects underwent in-vivo CCM. Corneal nerve fiber density (CNFD), corneal nerve branch density (CNBD), corneal nerve fiber length (CNFL), corneal nerve fiber total branch density (CTBD), corneal nerve fiber area (CNFA), corneal nerve fiber width (CNFW), fiber tortuosity (FT), number of beadings (NBe), and dendritic cells (DC) density were quantified. We enrolled 302 eyes of 151 patients. CNBD and FT were significantly higher (p = 0.0131, p < 0.0001), whereas CNFW and NBe were significantly lower (p = 0.0056, p = 0.0045) in the COVID-19 group compared to controls. Only CNBD and FT resulted significantly correlated to antiviral drugs (increased) and corticosteroids (decreased). No significant relationship with disease severity parameters was found. COVID-19 may induce peripheral neuropathy in small fibers even months after recovery, regardless of systemic conditions and therapy, and CCM may be a useful tool to identify and monitor these morphological changes.

SELECTION OF CITATIONS
SEARCH DETAIL