Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Nat Commun ; 13(1): 4212, 2022 07 21.
Article in English | MEDLINE | ID: covidwho-1947344

ABSTRACT

An easily implementable serological assay to accurately detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) neutralizing antibodies is urgently needed to better track herd immunity, vaccine efficacy and vaccination rates. Herein, we report the Split-Oligonucleotide Neighboring Inhibition Assay (SONIA) which uses real-time qPCR to measure the ability of neutralizing antibodies to block binding between DNA-barcoded viral spike protein subunit 1 and the human angiotensin-converting enzyme 2 receptor protein. The SONIA neutralizing antibody assay using finger-prick dried blood spots displays 91-97% sensitivity and 100% specificity in comparison to the live-virus neutralization assays using matched serum specimens for multiple SARS-CoV-2 variants-of-concern. The multiplex version of this neutralizing antibody assay, using easily collectable finger-prick dried blood spots, can be a valuable tool to help reveal the impact of age, pre-existing health conditions, waning immunity, different vaccination schemes and the emergence of new variants-of-concern.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , Humans , Neutralization Tests , Polymerase Chain Reaction , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus
2.
Microbiol Spectr ; : e0115422, 2022 Jul 05.
Article in English | MEDLINE | ID: covidwho-1938018

ABSTRACT

In August 2020, the Food and Drug Administration (FDA) Emergency Use Authorization (EUA) for COVID-19 convalescent plasma (CCP) specified 12 authorized serologic assays and associated assay-specific cutoff values for the selection of high-titer CCP for use in hospitalized patients. The criteria used for establishing these cutoff values remains unclear. Here, we compare the overall agreement and concordance of five serologic assays included in the August 2020 FDA EUA at both the manufacturer-recommended qualitative cutoff thresholds and at the FDA-indicated thresholds for high-titer CCP, using serum samples collected as part of the CCP Expanded Access Program (EAP). The qualitative positive percent agreement (PPA) across assays ranged from 92.3% to 98.8%. However, the high-titer categorization across assays varied significantly, with the PPA ranging from 26.5% to 82.7%. The Roche anti-NC ECLIA provided the lowest agreement compared to all other assays. Efforts to optimize high-titer cutoffs could reduce, although not eliminate, the discordance across assays. The consequences of using nonstandardized assays are apparent in our study, and the high-titer cutoffs chosen for each assay are not directly comparable to each other. The generalized findings in our study will be relevant to any future use of convalescent plasma for either COVID-19 or future pandemics of newly emerged pathogens. IMPORTANCE COVID-19 convalescent plasma (CCP) was one of the first therapeutic options available for the treatment of SARS-CoV-2 infections and continues to be used selectively for immunosuppressed patients. Given the emergence of novel SARS-CoV-2 variants which are resistant to treatment with available monoclonal antibody (MAb) therapy, CCP remains an important therapeutic consideration. The FDA has released several emergency use authorizations (EUA) that have specified which serological assays can be used for qualification of CCP, as well as assay-specific cutoffs that must be used to identify high-titer CCP. In this study, a cohort of donor CCP was assessed across multiple serological assays which received FDA EUA for qualification of CCP. This study indicates a high degree of discordance across the assays used to qualify CCP for clinical use, which may have precluded the optimal use of CCP, including during clinical trials. This study highlights the need for assay standardization early in the development of serological assays for emerging pathogens.

3.
J Clin Virol ; 145: 105024, 2021 12.
Article in English | MEDLINE | ID: covidwho-1768294

ABSTRACT

BACKGROUND: After receiving a COVID-19 vaccine, most recipients want to know if they are protected from infection and for how long. Since neutralizing antibodies are a correlate of protection, we developed a lateral flow assay (LFA) that measures levels of neutralizing antibodies from a drop of blood. The LFA is based on the principle that neutralizing antibodies block binding of the receptor-binding domain (RBD) to angiotensin-converting enzyme 2 (ACE2). METHODS: The ability of the LFA was assessed to correctly measure neutralization of sera, plasma or whole blood from patients with COVID-19 using SARS-CoV-2 microneutralization assays. We also determined if the LFA distinguished patients with seasonal respiratory viruses from patients with COVID-19. To demonstrate the usefulness of the LFA, we tested previously infected and non-infected COVID-19 vaccine recipients at baseline and after first and second vaccine doses. RESULTS: The LFA compared favorably with SARS-CoV-2 microneutralization assays with an area under the ROC curve of 98%. Sera obtained from patients with seasonal coronaviruses did not show neutralizing activity in the LFA. After a single mRNA vaccine dose, 87% of previously infected individuals demonstrated high levels of neutralizing antibodies. However, if individuals were not previously infected, only 24% demonstrated high levels of neutralizing antibodies after one vaccine dose. A second dose boosted neutralizing antibody levels just 8% higher in previously infected individuals, but over 63% higher in non-infected individuals. CONCLUSIONS: A rapid, semi-quantitative, highly portable and inexpensive neutralizing antibody test might be useful for monitoring rise and fall in vaccine-induced neutralizing antibodies to COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , COVID-19 Vaccines , Humans , Point-of-Care Testing , Spike Glycoprotein, Coronavirus , Vaccines, Synthetic
4.
J Clin Microbiol ; 59(9): e0123121, 2021 08 18.
Article in English | MEDLINE | ID: covidwho-1501537

ABSTRACT

Longitudinal studies assessing durability of the anti-severe acute respiratory syndrome coronavirus 2 (anti-SARS-CoV-2) humoral immune response have generated conflicting results. This has been proposed to be due to differences in patient populations, the lack of standardized methodologies, and the use of assays that measure distinct aspects of the humoral response. SARS-CoV-2 antibodies were serially measured in sera from a cohort of 44 well-characterized convalescent plasma donors over 120 days post-COVID-19 symptom onset, utilizing eight assays, which varied according to antigen source, the detected antibody isotype, and the activity measured (i.e., binding, blocking, or neutralizing). While the majority of assays demonstrated a gradual decline in antibody titers over the course of 120 days, the two electrochemiluminescence immunoassay Roche assays (Roche Diagnostics Elecsys anti-SARS-CoV-2 [qualitative, nucleocapsid based] and Roche Diagnostics Elecsys anti-SARS-CoV-2 S [semiquantitative, spike based]), which utilize dual-antigen binding for antibody detection, demonstrated stable and/or increasing antibody titers over the study period. This study is among the first to assess longitudinal, rather than cross-sectional, SARS-CoV-2 antibody profiles among convalescent COVID-19 patients, primarily using commercially available serologic assays with Food and Drug Administration emergency use authorization. We show that SARS-CoV-2 antibody detection is dependent on the serologic method used, which has implications for future assay utilization and clinical value.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , COVID-19/therapy , Cross-Sectional Studies , Humans , Immunization, Passive , Kinetics , Sensitivity and Specificity
6.
Nat Commun ; 12(1): 4864, 2021 08 11.
Article in English | MEDLINE | ID: covidwho-1354101

ABSTRACT

Successful therapeutics and vaccines for coronavirus disease 2019 (COVID-19) have harnessed the immune response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Evidence that SARS-CoV-2 exists as locally evolving variants suggests that immunological differences may impact the effectiveness of antibody-based treatments such as convalescent plasma and vaccines. Considering that near-sourced convalescent plasma likely reflects the antigenic composition of local viral strains, we hypothesize that convalescent plasma has a higher efficacy, as defined by death within 30 days of transfusion, when the convalescent plasma donor and treated patient were in close geographic proximity. Results of a series of modeling techniques applied to approximately 28,000 patients from the Expanded Access to Convalescent Plasma program (ClinicalTrials.gov number: NCT04338360) support this hypothesis. This work has implications for the interpretation of clinical studies, the ability to develop effective COVID-19 treatments, and, potentially, for the effectiveness of COVID-19 vaccines as additional locally-evolving variants continue to emerge.


Subject(s)
COVID-19/therapy , Plasma/immunology , Adolescent , Adult , Aged , Antibodies, Viral/immunology , Antibody Specificity , Antigenic Variation , Blood Donors , COVID-19/mortality , Female , Humans , Immunization, Passive/mortality , Male , Middle Aged , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Treatment Outcome , United States/epidemiology , Young Adult
7.
N Engl J Med ; 384(11): 1015-1027, 2021 03 18.
Article in English | MEDLINE | ID: covidwho-1057739

ABSTRACT

BACKGROUND: Convalescent plasma has been widely used to treat coronavirus disease 2019 (Covid-19) under the presumption that such plasma contains potentially therapeutic antibodies to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that can be passively transferred to the plasma recipient. Whether convalescent plasma with high antibody levels rather than low antibody levels is associated with a lower risk of death is unknown. METHODS: In a retrospective study based on a U.S. national registry, we determined the anti-SARS-CoV-2 IgG antibody levels in convalescent plasma used to treat hospitalized adults with Covid-19. The primary outcome was death within 30 days after plasma transfusion. Patients who were enrolled through July 4, 2020, and for whom data on anti-SARS-CoV-2 antibody levels in plasma transfusions and on 30-day mortality were available were included in the analysis. RESULTS: Of the 3082 patients included in this analysis, death within 30 days after plasma transfusion occurred in 115 of 515 patients (22.3%) in the high-titer group, 549 of 2006 patients (27.4%) in the medium-titer group, and 166 of 561 patients (29.6%) in the low-titer group. The association of anti-SARS-CoV-2 antibody levels with the risk of death from Covid-19 was moderated by mechanical ventilation status. A lower risk of death within 30 days in the high-titer group than in the low-titer group was observed among patients who had not received mechanical ventilation before transfusion (relative risk, 0.66; 95% confidence interval [CI], 0.48 to 0.91), and no effect on the risk of death was observed among patients who had received mechanical ventilation (relative risk, 1.02; 95% CI, 0.78 to 1.32). CONCLUSIONS: Among patients hospitalized with Covid-19 who were not receiving mechanical ventilation, transfusion of plasma with higher anti-SARS-CoV-2 IgG antibody levels was associated with a lower risk of death than transfusion of plasma with lower antibody levels. (Funded by the Department of Health and Human Services and others; ClinicalTrials.gov number, NCT04338360.).


Subject(s)
Antibodies, Viral/blood , COVID-19/therapy , SARS-CoV-2/immunology , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/immunology , COVID-19/mortality , Female , Hospitalization , Humans , Immunization, Passive , Immunoglobulin G/blood , Male , Middle Aged , Registries , Respiration, Artificial , Retrospective Studies , Risk Factors , Time-to-Treatment , United States/epidemiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL