Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
2.
Matter ; 5(11): 4076-4091, 2022 Nov 02.
Article in English | MEDLINE | ID: covidwho-1996418

ABSTRACT

Surfaces contaminated with bacteria and viruses contribute to the transmission of infectious diseases and pose a significant threat to global public health. Modern day disinfection either relies on fast-acting (>3-log reduction within a few minutes), yet impermanent, liquid-, vapor-, or radiation-based disinfection techniques, or long-lasting, but slower-acting, passive antimicrobial surfaces based on heavy metal surfaces, or metallic nanoparticles. There is currently no surface that provides instant and persistent antimicrobial efficacy against a broad spectrum of bacteria and viruses. In this work, we describe a class of extremely durable antimicrobial surfaces incorporating different plant secondary metabolites that are capable of rapid disinfection (>4-log reduction) of current and emerging pathogens within minutes, while maintaining persistent efficacy over several months and under significant environmental duress. We also show that these surfaces can be readily applied onto a variety of desired substrates or devices via simple application techniques such as spray, flow, or brush coating.

3.
Vaccines (Basel) ; 10(8)2022 Aug 09.
Article in English | MEDLINE | ID: covidwho-1979451

ABSTRACT

Niclosamide, an FDA-approved oral anthelmintic drug, has broad biological activity including anticancer, antibacterial, and antiviral properties. Niclosamide has also been identified as a potent inhibitor of SARS-CoV-2 infection in vitro, generating interest in its use for the treatment or prevention of COVID-19. Unfortunately, there are several potential issues with using niclosamide for COVID-19, including low bioavailability, significant polypharmacology, high cellular toxicity, and unknown efficacy against emerging SARS-CoV-2 variants of concern. In this study, we used high-content imaging-based immunofluorescence assays in two different cell models to assess these limitations and evaluate the potential for using niclosamide as a COVID-19 antiviral. We show that despite promising preliminary reports, the antiviral efficacy of niclosamide overlaps with its cytotoxicity giving it a poor in vitro selectivity index for anti-SARS-CoV-2 inhibition. We also show that niclosamide has significantly variable potency against the different SARS-CoV-2 variants of concern and is most potent against variants with enhanced cell-to-cell spread including the B.1.1.7 (alpha) variant. Finally, we report the activity of 33 niclosamide analogs, several of which have reduced cytotoxicity and increased potency relative to niclosamide. A preliminary structure-activity relationship analysis reveals dependence on a protonophore for antiviral efficacy, which implicates nonspecific endolysosomal neutralization as a dominant mechanism of action. Further single-cell morphological profiling suggests niclosamide also inhibits viral entry and cell-to-cell spread by syncytia. Altogether, our results suggest that niclosamide is not an ideal candidate for the treatment of COVID-19, but that there is potential for developing improved analogs with higher clinical translational potential in the future.

4.
PLoS Pathog ; 18(3): e1010377, 2022 03.
Article in English | MEDLINE | ID: covidwho-1714786

ABSTRACT

SARS-CoV-2 infection is initiated by binding of the viral spike protein to its receptor, ACE2, on the surface of host cells. ACE2 expression is heterogeneous both in vivo and in immortalized cell lines, but the molecular pathways that govern ACE2 expression remain unclear. We now report high-throughput CRISPR screens for functional modifiers of ACE2 surface abundance. In liver-derived HuH7 cells, we identified 35 genes whose disruption was associated with a change in the surface abundance of ACE2. Enriched among these ACE2 regulators were established transcription factors, epigenetic regulators, and functional networks. We further characterized individual HuH7 cell lines with disruption of SMAD4, EP300, PIAS1, or BAMBI and found these genes to regulate ACE2 at the mRNA level and to influence cellular susceptibility to SARS-CoV-2 infection. Orthogonal screening of lung-derived Calu-3 cells revealed a distinct set of ACE2 modifiers comprised of ACE2, KDM6A, MOGS, GPAA1, and UGP2. Collectively, our findings clarify the host factors involved in SARS-CoV-2 entry, highlight the cell type specificity of ACE2 regulatory networks, and suggest potential targets for therapeutic development.


Subject(s)
COVID-19 , Angiotensin-Converting Enzyme 2/genetics , COVID-19/genetics , Cell Line , Clustered Regularly Interspaced Short Palindromic Repeats , Humans , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/metabolism
5.
J Infect Dis ; 224(8): 1287-1293, 2021 10 28.
Article in English | MEDLINE | ID: covidwho-1505875

ABSTRACT

BACKGROUND: Previous studies demonstrated that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA can be detected for weeks after infection. The significance of this finding is unclear and, in most patients, does not represent active infection. Detection of subgenomic RNA has been proposed to represent productive infection and may be a useful marker for monitoring infectivity. METHODS: We used quantitative reverse-transcription polymerase chain reaction (RT-qPCR) to quantify total and subgenomic nucleocapsid (sgN) and envelope (sgE) transcripts in 185 SARS-CoV-2-positive nasopharyngeal swab samples collected on hospital admission and to relate to symptom duration. RESULTS: We find that all transcripts decline at the same rate; however, sgE becomes undetectable before other transcripts. The median duration of symptoms to a negative test is 14 days for sgE and 25 days for sgN. There is a linear decline in subgenomic compared to total RNA, suggesting that subgenomic transcript copy number is dependent on copy number of total transcripts. The mean difference between total and sgN is 16-fold and the mean difference between total and sgE is 137-fold. This relationship is constant over duration of symptoms, allowing prediction of subgenomic copy number from total copy number. CONCLUSIONS: Subgenomic RNA may be no more useful in determining infectivity than a copy number threshold determined for total RNA.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19/diagnosis , RNA, Viral/isolation & purification , SARS-CoV-2/isolation & purification , Viral Load , Aged , COVID-19/transmission , COVID-19/virology , COVID-19 Nucleic Acid Testing/standards , COVID-19 Nucleic Acid Testing/statistics & numerical data , Coronavirus Envelope Proteins/genetics , Coronavirus Nucleocapsid Proteins/genetics , Feasibility Studies , Female , Humans , Male , Middle Aged , Nasopharynx/pathology , Nasopharynx/virology , Phosphoproteins/genetics , Real-Time Polymerase Chain Reaction/statistics & numerical data , Reference Values , Retrospective Studies , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity
6.
Proc Natl Acad Sci U S A ; 118(36)2021 09 07.
Article in English | MEDLINE | ID: covidwho-1366851

ABSTRACT

The global spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and the associated disease COVID-19, requires therapeutic interventions that can be rapidly identified and translated to clinical care. Traditional drug discovery methods have a >90% failure rate and can take 10 to 15 y from target identification to clinical use. In contrast, drug repurposing can significantly accelerate translation. We developed a quantitative high-throughput screen to identify efficacious agents against SARS-CoV-2. From a library of 1,425 US Food and Drug Administration (FDA)-approved compounds and clinical candidates, we identified 17 hits that inhibited SARS-CoV-2 infection and analyzed their antiviral activity across multiple cell lines, including lymph node carcinoma of the prostate (LNCaP) cells and a physiologically relevant model of alveolar epithelial type 2 cells (iAEC2s). Additionally, we found that inhibitors of the Ras/Raf/MEK/ERK signaling pathway exacerbate SARS-CoV-2 infection in vitro. Notably, we discovered that lactoferrin, a glycoprotein found in secretory fluids including mammalian milk, inhibits SARS-CoV-2 infection in the nanomolar range in all cell models with multiple modes of action, including blockage of virus attachment to cellular heparan sulfate and enhancement of interferon responses. Given its safety profile, lactoferrin is a readily translatable therapeutic option for the management of COVID-19.


Subject(s)
Antiviral Agents/pharmacology , Immunologic Factors/pharmacology , Lactoferrin/pharmacology , SARS-CoV-2/drug effects , Virus Internalization/drug effects , Virus Replication/drug effects , Animals , COVID-19/drug therapy , COVID-19/immunology , COVID-19/prevention & control , COVID-19/virology , Caco-2 Cells , Cell Line, Tumor , Chlorocebus aethiops , Dose-Response Relationship, Drug , Drug Discovery , Drug Repositioning/methods , Epithelial Cells , Heparitin Sulfate/antagonists & inhibitors , Heparitin Sulfate/immunology , Heparitin Sulfate/metabolism , Hepatocytes , High-Throughput Screening Assays , Humans , SARS-CoV-2/growth & development , SARS-CoV-2/pathogenicity , Vero Cells
7.
J Virol ; 95(15): e0029421, 2021 07 12.
Article in English | MEDLINE | ID: covidwho-1305506

ABSTRACT

The pathogenic mechanisms underlying severe SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) infection remain largely unelucidated. High-throughput sequencing technologies that capture genome and transcriptome information are key approaches to gain detailed mechanistic insights from infected cells. These techniques readily detect both pathogen- and host-derived sequences, providing a means of studying host-pathogen interactions. Recent studies have reported the presence of host-virus chimeric (HVC) RNA in transcriptome sequencing (RNA-seq) data from SARS-CoV-2-infected cells and interpreted these findings as evidence of viral integration in the human genome as a potential pathogenic mechanism. Since SARS-CoV-2 is a positive-sense RNA virus that replicates in the cytoplasm, it does not have a nuclear phase in its life cycle. Thus, it is biologically unlikely to be in a location where splicing events could result in genome integration. Therefore, we investigated the biological authenticity of HVC events. In contrast to true biological events like mRNA splicing and genome rearrangement events, which generate reproducible chimeric sequencing fragments across different biological isolates, we found that HVC events across >100 RNA-seq libraries from patients with coronavirus disease 2019 (COVID-19) and infected cell lines were highly irreproducible. RNA-seq library preparation is inherently error prone due to random template switching during reverse transcription of RNA to cDNA. By counting chimeric events observed when constructing an RNA-seq library from human RNA and spiked-in RNA from an unrelated species, such as the fruit fly, we estimated that ∼1% of RNA-seq reads are artifactually chimeric. In SARS-CoV-2 RNA-seq, we found that the frequency of HVC events was, in fact, not greater than this background "noise." Finally, we developed a novel experimental approach to enrich SARS-CoV-2 sequences from bulk RNA of infected cells. This method enriched viral sequences but did not enrich HVC events, suggesting that the majority of HVC events are, in all likelihood, artifacts of library construction. In conclusion, our findings indicate that HVC events observed in RNA-sequencing libraries from SARS-CoV-2-infected cells are extremely rare and are likely artifacts arising from random template switching of reverse transcriptase and/or sequence alignment errors. Therefore, the observed HVC events do not support SARS-CoV-2 fusion to cellular genes and/or integration into human genomes. IMPORTANCE The pathogenic mechanisms underlying SARS-CoV-2, the virus responsible for COVID-19, are not fully understood. In particular, relatively little is known about the reasons some individuals develop life-threatening or persistent COVID-19. Recent studies identified host-virus chimeric (HVC) reads in RNA-sequencing data from SARS-CoV-2-infected cells and suggested that HVC events support potential "human genome invasion" and "integration" by SARS-CoV-2. This suggestion has fueled concerns about the long-term effects of current mRNA vaccines that incorporate elements of the viral genome. SARS-CoV-2 is a positive-sense, single-stranded RNA virus that does not encode a reverse transcriptase and does not include a nuclear phase in its life cycle, so some doubts have rightfully been expressed regarding the authenticity of HVCs and the role played by endogenous retrotransposons in this phenomenon. Thus, it is important to independently authenticate these HVC events. Here, we provide several lines of evidence suggesting that the observed HVC events are likely artifactual.


Subject(s)
COVID-19/metabolism , Host-Pathogen Interactions , RNA, Viral/metabolism , RNA-Seq , SARS-CoV-2/physiology , Virus Replication , COVID-19/genetics , COVID-19/pathology , Cell Line, Tumor , Humans , RNA, Viral/genetics
8.
Sci Immunol ; 6(58)2021 04 07.
Article in English | MEDLINE | ID: covidwho-1172732

ABSTRACT

Patients with coronavirus disease 2019 (COVID-19) present a wide range of acute clinical manifestations affecting the lungs, liver, kidneys and gut. Angiotensin converting enzyme (ACE) 2, the best-characterized entry receptor for the disease-causing virus SARS-CoV-2, is highly expressed in the aforementioned tissues. However, the pathways that underlie the disease are still poorly understood. Here, we unexpectedly found that the complement system was one of the intracellular pathways most highly induced by SARS-CoV-2 infection in lung epithelial cells. Infection of respiratory epithelial cells with SARS-CoV-2 generated activated complement component C3a and could be blocked by a cell-permeable inhibitor of complement factor B (CFBi), indicating the presence of an inducible cell-intrinsic C3 convertase in respiratory epithelial cells. Within cells of the bronchoalveolar lavage of patients, distinct signatures of complement activation in myeloid, lymphoid and epithelial cells tracked with disease severity. Genes induced by SARS-CoV-2 and the drugs that could normalize these genes both implicated the interferon-JAK1/2-STAT1 signaling system and NF-κB as the main drivers of their expression. Ruxolitinib, a JAK1/2 inhibitor, normalized interferon signature genes and all complement gene transcripts induced by SARS-CoV-2 in lung epithelial cell lines, but did not affect NF-κB-regulated genes. Ruxolitinib, alone or in combination with the antiviral remdesivir, inhibited C3a protein produced by infected cells. Together, we postulate that combination therapy with JAK inhibitors and drugs that normalize NF-κB-signaling could potentially have clinical application for severe COVID-19.


Subject(s)
COVID-19/metabolism , Complement Activation , Epithelial Cells/metabolism , Janus Kinase 1/metabolism , Janus Kinase 2/metabolism , Lung/metabolism , MAP Kinase Signaling System , SARS-CoV-2/metabolism , COVID-19/pathology , Cell Line, Tumor , Complement C3a/metabolism , Complement Factor B/metabolism , Epithelial Cells/pathology , Humans , Lung/pathology
9.
J Infect Dis ; 223(1): 23-27, 2021 01 04.
Article in English | MEDLINE | ID: covidwho-1066344

ABSTRACT

We describe a case of chronic coronavirus disease 2019 (COVID-19) in a patient with lymphoma and associated B-cell immunodeficiency. Viral cultures and sequence analysis demonstrate ongoing replication of infectious severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) for at least 119 days. The patient had 3 admissions related to COVID-19 over a 4-month period and was treated twice with remdesivir and convalescent plasma with resolution of symptoms. The patient's lack of seroconversion and prolonged course illustrate the importance of humoral immunity in resolving SARS-CoV-2 infection. This case highlights challenges in managing immunocompromised hosts, who may act as persistent shedders and sources of transmission.


Subject(s)
COVID-19/virology , SARS-CoV-2/physiology , Virus Replication , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/therapeutic use , Alanine/analogs & derivatives , Alanine/therapeutic use , Antibodies, Viral/blood , COVID-19/diagnosis , Hospitalization , Humans , Immunity, Humoral , Immunocompromised Host , Lymphoma, Mantle-Cell/complications , Male , Middle Aged , Primary Immunodeficiency Diseases/complications , Seroconversion
10.
Int J Infect Dis ; 100: 224-229, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-959824

ABSTRACT

OBJECTIVES: There are currently no studies that have examined whether one dosage can be uniformly applied to different respirator types to effectively decontaminate SARS-CoV-2 on N95 filtering facepiece respirators (FFRs). Health care workers have been using this disinfection method during the pandemic. Our objective was to determine the effect of UVC on SARS-CoV-2 inoculated N95 respirators and whether this was respirator material/model type dependent. METHODS: Four different locations (facepiece and strap) on five different N95 FFR models (3M 1860, 8210, 8511, 9211; Moldex 1511) were inoculated with a 10 µL drop of SARS-CoV-2 viral stock (8 × 107 TCID50/mL). The outside-facing and wearer-facing surfaces of the respirators were each irradiated with a dose of 1.5 J/cm2 UVC (254 nm). Viable SARS-CoV-2 was quantified by a median tissue culture infectious dose assay (TCID50). RESULTS: UVC delivered using a dose of 1.5 J/cm2, to each side, was an effective method of decontamination for the facepieces of 3M 1860 and Moldex 1511, and for the straps of 3M 8210 and the Moldex 1511. CONCLUSION: This dose is an appropriate decontamination method to facilitate the reuse of respirators for healthcare personnel when applied to specific models/materials. Also, some straps may require additional disinfection to maximize the safety of frontline workers. Implementation of widespread UVC decontamination methods requires careful consideration of model, material type, design, and fit-testing following irradiation.


Subject(s)
Decontamination/methods , Masks/virology , SARS-CoV-2/physiology , SARS-CoV-2/radiation effects , Ultraviolet Rays , Ventilators, Mechanical/virology , Disinfection/methods , Dose-Response Relationship, Radiation , Equipment Reuse , Humans , Pandemics
SELECTION OF CITATIONS
SEARCH DETAIL