Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Add filters

Document Type
Year range
J Am Chem Soc ; 144(36): 16310-16315, 2022 09 14.
Article in English | MEDLINE | ID: covidwho-2008246


We introduce a new method to generate an amplified signal in CRISPR-Cas-based detection. Target recognition activates a CRISPR-Cas complex, leading to catalytic cleavage of horseradish peroxidase (HRP)-labeled oligonucleotides from the surface of microbeads. We show that the HRP released into solution can be monitored through colorimetric, fluorometric, or luminescent approaches, yielding up to ∼75-fold turn-on signal and limits of detection (LODs) as low as ∼10 fM. Compared to Cas-based detection with a conventional fluorophore/quencher reporter, this strategy improves the LOD by ∼30-fold. As a proof-of-concept, we show the rapid (<1 h), PCR-free, and room temperature (25 °C) detection of a nucleic acid marker for the SARS-CoV-2 virus with the naked eye at clinically relevant concentrations. We further show that the probe set can be programmed to be recognized and activated in the presence of non-nucleic acid targets. Specifically, we show adenosine triphosphate (ATP) binding to an aptamer can activate CRISPR-Cas and trigger a colorimetric readout, enabling the analysis of ATP in human serum samples with sensitivity on par with that of several commercially available kits. Taken together, the strategy reported herein offers a simple and sensitive platform to detect analytes where target amplification is either inconvenient (e.g., PCR under point-of-care settings) or impossible.

Biosensing Techniques , COVID-19 , Nucleic Acids , Adenosine Triphosphate/analysis , COVID-19/diagnosis , CRISPR-Cas Systems , Horseradish Peroxidase , Humans , Nucleic Acid Amplification Techniques/methods , SARS-CoV-2/genetics
Proc Natl Acad Sci U S A ; 119(14): e2119093119, 2022 04 05.
Article in English | MEDLINE | ID: covidwho-1751830


SignificanceUsing SARS-CoV-2 as a relevant case study for infectious disease, we investigate the structure-function relationships that dictate antiviral spherical nucleic acid (SNA) vaccine efficacy. We show that the SNA architecture can be rapidly employed to target COVID-19 through incorporation of the receptor-binding domain, and that the resulting vaccine potently activates human cells in vitro and mice in vivo. Furthermore, when challenged with a lethal viral infection, only mice treated with the SNA vaccine survived. Taken together, this work underscores the importance of rational vaccine design for infectious disease to yield vaccines that elicit more potent immune responses to effectively fight disease.

Communicable Disease Control , Nucleic Acids/immunology , Vaccines, DNA/immunology , Animals , Biotechnology , COVID-19/prevention & control , Communicable Disease Control/methods , Communicable Diseases/etiology , Communicable Diseases/immunology , Humans , Nucleic Acids/chemistry , SARS-CoV-2/immunology , Vaccine Development , Vaccines, DNA/genetics , Viral Vaccines/genetics , Viral Vaccines/immunology