Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Add filters

Document Type
Year range
Nanomaterials (Basel) ; 11(10)2021 Sep 24.
Article in English | MEDLINE | ID: covidwho-1480888


Ammonia (NH3) is a vital compound in diversified fields, including agriculture, automotive, chemical, food processing, hydrogen production and storage, and biomedical applications. Its extensive industrial use and emission have emerged hazardous to the ecosystem and have raised global public health concerns for monitoring NH3 emissions and implementing proper safety strategies. These facts created emergent demand for translational and sustainable approaches to design efficient, affordable, and high-performance compact NH3 sensors. Commercially available NH3 sensors possess three major bottlenecks: poor selectivity, low concentration detection, and room-temperature operation. State-of-the-art NH3 sensors are scaling up using advanced nano-systems possessing rapid, selective, efficient, and enhanced detection to overcome these challenges. MXene-polymer nanocomposites (MXP-NCs) are emerging as advanced nanomaterials of choice for NH3 sensing owing to their affordability, excellent conductivity, mechanical flexibility, scalable production, rich surface functionalities, and tunable morphology. The MXP-NCs have demonstrated high performance to develop next-generation intelligent NH3 sensors in agricultural, industrial, and biomedical applications. However, their excellent NH3-sensing features are not articulated in the form of a review. This comprehensive review summarizes state-of-the-art MXP-NCs fabrication techniques, optimization of desired properties, enhanced sensing characteristics, and applications to detect airborne NH3. Furthermore, an overview of challenges, possible solutions, and prospects associated with MXP-NCs is discussed.

Biosensors (Basel) ; 11(10)2021 Sep 29.
Article in English | MEDLINE | ID: covidwho-1480582


It has been proven that rapid bioinformatics analysis according to patient health profiles, in addition to biomarker detection at a low level, is emerging as essential to design an analytical diagnostics system to manage health intelligently in a personalized manner. Such objectives need an optimized combination of a nano-enabled sensing prototype, artificial intelligence (AI)-supported predictive analysis, and Internet of Medical Things (IoMT)-based bioinformatics analysis. Such a developed system began with a prototype demonstration of efficient diseases diagnostics performance is the future diseases management approach. To explore these aspects, the Special Issue planned for the nano-and micro-technology section of MDPI's Biosensors journal will honor and acknowledge the contributions of Prof. B.D. Malhotra, Ph.D., FNA, FNASc has made in the field of biosensors.

Biosensing Techniques , Nanotechnology , Artificial Intelligence , Biomarkers , Humans , Point-of-Care Systems
Autoimmun Rev ; 20(11): 102941, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1401227


Although vaccination represents the most promising way to stop or contain the coronavirus disease 2019 (COVID-19) pandemic and safety and effectiveness of available vaccines were proven, a small number of individuals who received anti-SARS-CoV-2 vaccines developed a prothrombotic syndrome. Vaccine-induced immune thrombotic thrombocytopenia (VITT) can be triggered by the adenoviral vector-based vaccine, whereas lipid nanoparticle-mRNA-based vaccines can induce rare cases of deep vein thrombosis (DVT). Although the main pathogenic mechanisms behind this rare phenomenon have not yet been identified, both host and vaccine factors might be involved, with pathology at least in part being related to the vaccine-triggered autoimmune reaction. In this review, we are considering some aspects related to pathogenesis, major risk factors, as well as peculiarities of diagnosis and treatment of this rare condition.

COVID-19 , SARS Virus , Viral Vaccines , Autoimmunity , COVID-19 Vaccines , Humans , SARS-CoV-2 , Vaccination/adverse effects
Comput Biol Med ; 133: 104380, 2021 06.
Article in English | MEDLINE | ID: covidwho-1184908


Immune evasion is one of the unique characteristics of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) attributed to its ORF8 protein. This protein modulates the adaptive host immunity through down-regulation of MHC-1 (Major Histocompatibility Complex) molecules and innate immune responses by surpassing the host's interferon-mediated antiviral response. To understand the host's immune perspective in reference to the ORF8 protein, a comprehensive study of the ORF8 protein and mutations possessed by it have been performed. Chemical and structural properties of ORF8 proteins from different hosts, such as human, bat, and pangolin, suggest that the ORF8 of SARS-CoV-2 is much closer to ORF8 of Bat RaTG13-CoV than to that of Pangolin-CoV. Eighty-seven mutations across unique variants of ORF8 in SARS-CoV-2 can be grouped into four classes based on their predicted effects (Hussain et al., 2021) [1]. Based on the geo-locations and timescale of sample collection, a possible flow of mutations was built. Furthermore, conclusive flows of amalgamation of mutations were found upon sequence similarity analyses and consideration of the amino acid conservation phylogenies. Therefore, this study seeks to highlight the uniqueness of the rapidly evolving SARS-CoV-2 through the ORF8.

COVID-19 , SARS-CoV-2 , Evolution, Molecular , Genome, Viral , Humans , Phylogeny