Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Year range
1.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-293414

ABSTRACT

ABSTRACT We assessed if immune responses are enhanced in CD-1 mice by heterologous vaccination with two different nucleic acid-based COVID-19 vaccines: a next-generation human adenovirus serotype 5 (hAd5)-vectored dual-antigen spike (S) and nucleocapsid (N) vaccine (AdS+N) and a self-amplifying and -adjuvanted S RNA vaccine (SASA S) delivered by a nanostructured lipid carrier. The AdS+N vaccine encodes S modified with a fusion motif to increase cell-surface expression. The N antigen is modified with an Enhanced T-cell Stimulation Domain (N-ETSD) to direct N to the endosomal/lysosomal compartment to increase the potential for MHC class I and II stimulation. The S sequence in the SASA S vaccine comprises the D614G mutation, two prolines to stabilize S in the prefusion conformation, and 3 glutamines in the furin cleavage region to increase cross-reactivity across variants. CD-1 mice received vaccination by prime > boost homologous and heterologous combinations. Humoral responses to S were the highest with any regimen including the SASA S vaccine, and IgG against wild type S1 and Delta (B.1.617.2) variant S1 was generated at similar levels. An AdS+N boost of an SASA S prime enhanced both CD4+ and CD8+ T-cell responses to both S wild type and S Delta peptides relative to all other vaccine regimens. Sera from mice receiving SASA S homologous or heterologous vaccination were found to be highly neutralizing of all pseudovirus tested: Wuhan, Delta, and Beta strain pseudoviruses. The findings here support the clinical testing of heterologous vaccination by an SASA S > AdS+N regimen to provide increased protection against COVID-19 and SARS-CoV-2 variants.

2.
Sci Rep ; 11(1): 14917, 2021 07 21.
Article in English | MEDLINE | ID: covidwho-1320238

ABSTRACT

We have developed a COVID-19 vaccine, hAd5 S-Fusion + N-ETSD, that expresses SARS-CoV-2 spike (S) and nucleocapsid (N) proteins with modifications to increase immune responses delivered using a human adenovirus serotype 5 (hAd5) platform. Here, we demonstrate subcutaneous (SC) prime and SC boost vaccination of CD-1 mice with this dual-antigen vaccine elicits T-helper cell 1 (Th1) biased T-cell and humoral responses to both S and N that are greater than those seen with hAd5 S wild type delivering only unmodified S. We then compared SC to intranasal (IN) prime vaccination with SC or IN boosts and show that an IN prime with an IN boost is as effective at generating Th1 biased humoral responses as the other combinations tested, but an SC prime with an IN or SC boost elicits greater T cell responses. Finally, we used a combined SC plus IN (SC + IN) prime with or without a boost and found the SC + IN prime alone to be as effective in generating humoral and T-cell responses as the SC + IN prime with a boost. The finding that SC + IN prime-only delivery has the potential to provide broad immunity-including mucosal immunity-against SARS-CoV-2 supports further testing of this vaccine and delivery approach in animal models of viral challenge.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , Adenoviridae/genetics , Administration, Intranasal , Animals , Antibodies, Neutralizing , Antibodies, Viral/biosynthesis , Antibodies, Viral/immunology , COVID-19 Vaccines/immunology , Female , Genetic Vectors , Hypodermoclysis , Immunity, Cellular/immunology , Immunity, Mucosal/immunology , Immunization, Secondary , Mice , Mice, Inbred Strains , Vaccination/methods
SELECTION OF CITATIONS
SEARCH DETAIL