Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
Clin Infect Dis ; 2023 May 31.
Article in English | MEDLINE | ID: covidwho-20238063

ABSTRACT

INTRODUCTION: Understanding the changing epidemiology of adults hospitalized with coronavirus disease 2019 (COVID-19) informs research priorities and public health policies. METHODS: Among adults (≥18 years) hospitalized with laboratory-confirmed, acute COVID-19 between 11 March 2021, and 31 August 2022 at 21 hospitals in 18 states, those hospitalized during the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron-predominant period (BA.1, BA.2, BA.4/BA.5) were compared to those from earlier Alpha- and Delta-predominant periods. Demographic characteristics, biomarkers within 24 hours of admission, and outcomes, including oxygen support and death, were assessed. RESULTS: Among 9825 patients, median (interquartile range [IQR]) age was 60 years (47-72), 47% were women, and 21% non-Hispanic Black. From the Alpha-predominant period (Mar-Jul 2021; N = 1312) to the Omicron BA.4/BA.5 sublineage-predominant period (Jun-Aug 2022; N = 1307): the percentage of patients who had ≥4 categories of underlying medical conditions increased from 11% to 21%; those vaccinated with at least a primary COVID-19 vaccine series increased from 7% to 67%; those ≥75 years old increased from 11% to 33%; those who did not receive any supplemental oxygen increased from 18% to 42%. Median (IQR) highest C-reactive protein and D-dimer concentration decreased from 42.0 mg/L (9.9-122.0) to 11.5 mg/L (2.7-42.8) and 3.1 mcg/mL (0.8-640.0) to 1.0 mcg/mL (0.5-2.2), respectively. In-hospital death peaked at 12% in the Delta-predominant period and declined to 4% during the BA.4/BA.5-predominant period. CONCLUSIONS: Compared to adults hospitalized during early COVID-19 variant periods, those hospitalized during Omicron-variant COVID-19 were older, had multiple co-morbidities, were more likely to be vaccinated, and less likely to experience severe respiratory disease, systemic inflammation, coagulopathy, and death.

2.
Vaccine ; 41(29): 4249-4256, 2023 06 29.
Article in English | MEDLINE | ID: covidwho-2319667

ABSTRACT

BACKGROUND: Accurate determination of COVID-19 vaccination status is necessary to produce reliable COVID-19 vaccine effectiveness (VE) estimates. Data comparing differences in COVID-19 VE by vaccination sources (i.e., immunization information systems [IIS], electronic medical records [EMR], and self-report) are limited. We compared the number of mRNA COVID-19 vaccine doses identified by each of these sources to assess agreement as well as differences in VE estimates using vaccination data from each individual source and vaccination data adjudicated from all sources combined. METHODS: Adults aged ≥18 years who were hospitalized with COVID-like illness at 21 hospitals in 18 U.S. states participating in the IVY Network during February 1-August 31, 2022, were enrolled. Numbers of COVID-19 vaccine doses identified by IIS, EMR, and self-report were compared in kappa agreement analyses. Effectiveness of mRNA COVID-19 vaccines against COVID-19-associated hospitalization was estimated using multivariable logistic regression models to compare the odds of COVID-19 vaccination between SARS-CoV-2-positive case-patients and SARS-CoV-2-negative control-patients. VE was estimated using each source of vaccination data separately and all sources combined. RESULTS: A total of 4499 patients were included. Patients with ≥1 mRNA COVID-19 vaccine dose were identified most frequently by self-report (n = 3570, 79 %), followed by IIS (n = 3272, 73 %) and EMR (n = 3057, 68 %). Agreement was highest between IIS and self-report for 4 doses with a kappa of 0.77 (95 % CI = 0.73-0.81). VE point estimates of 3 doses against COVID-19 hospitalization were substantially lower when using vaccination data from EMR only (VE = 31 %, 95 % CI = 16 %-43 %) than when using all sources combined (VE = 53 %, 95 % CI = 41 %-62%). CONCLUSION: Vaccination data from EMR only may substantially underestimate COVID-19 VE.


Subject(s)
COVID-19 Vaccines , COVID-19 , Adult , Humans , Adolescent , Self Report , Electronic Health Records , Vaccine Efficacy , COVID-19/prevention & control , SARS-CoV-2 , Immunization , Vaccination , Hospitalization , RNA, Messenger
3.
MMWR Morb Mortal Wkly Rep ; 72(17): 463-468, 2023 Apr 28.
Article in English | MEDLINE | ID: covidwho-2294077

ABSTRACT

As of April 2023, the COVID-19 pandemic has resulted in 1.1 million deaths in the United States, with approximately 75% of deaths occurring among adults aged ≥65 years (1). Data on the durability of protection provided by monovalent mRNA COVID-19 vaccination against critical outcomes of COVID-19 are limited beyond the Omicron BA.1 lineage period (December 26, 2021-March 26, 2022). In this case-control analysis, the effectiveness of 2-4 monovalent mRNA COVID-19 vaccine doses was evaluated against COVID-19-associated invasive mechanical ventilation (IMV) and in-hospital death among immunocompetent adults aged ≥18 years during February 1, 2022-January 31, 2023. Vaccine effectiveness (VE) against IMV and in-hospital death was 62% among adults aged ≥18 years and 69% among those aged ≥65 years. When stratified by time since last dose, VE was 76% at 7-179 days, 54% at 180-364 days, and 56% at ≥365 days. Monovalent mRNA COVID-19 vaccination provided substantial, durable protection against IMV and in-hospital death among adults during the Omicron variant period. All adults should remain up to date with recommended COVID-19 vaccination to prevent critical COVID-19-associated outcomes.


Subject(s)
COVID-19 , Humans , Adult , Adolescent , COVID-19/prevention & control , COVID-19 Vaccines , Hospital Mortality , Pandemics , Respiration, Artificial , SARS-CoV-2 , RNA, Messenger
4.
Clin Infect Dis ; 2022 Nov 03.
Article in English | MEDLINE | ID: covidwho-2283784

ABSTRACT

BACKGROUND: The COVID-19 pandemic was associated with historically low influenza circulation during the 2020-2021 season, followed by increase in influenza circulation during the 2021-2022 US season. The 2a.2 subgroup of the influenza A(H3N2) 3C.2a1b subclade that predominated was antigenically different from the vaccine strain. METHODS: To understand the effectiveness of the 2021-2022 vaccine against hospitalized influenza illness, a multi-state sentinel surveillance network enrolled adults aged ≥18 years hospitalized with acute respiratory illness (ARI) and tested for influenza by a molecular assay. Using the test-negative design, vaccine effectiveness (VE) was measured by comparing the odds of current season influenza vaccination in influenza-positive case-patients and influenza-negative, SARS-CoV-2-negative controls, adjusting for confounders. A separate analysis was performed to illustrate bias introduced by including SARS-CoV-2 positive controls. RESULTS: A total of 2334 patients, including 295 influenza cases (47% vaccinated), 1175 influenza- and SARS-CoV-2 negative controls (53% vaccinated), and 864 influenza-negative and SARS-CoV-2 positive controls (49% vaccinated), were analyzed. Influenza VE was 26% (95%CI: -14 to 52%) among adults aged 18-64 years, -3% (95%CI: -54 to 31%) among adults aged ≥65 years, and 50% (95%CI: 15 to 71%) among adults 18-64 years without immunocompromising conditions. Estimated VE decreased with inclusion of SARS-CoV-2-positive controls. CONCLUSIONS: During a season where influenza A(H3N2) was antigenically different from the vaccine virus, vaccination was associated with a reduced risk of influenza hospitalization in younger immunocompetent adults. However, vaccination did not provide protection in adults ≥65 years of age. Improvements in vaccines, antivirals, and prevention strategies are warranted.

5.
J Infect Dis ; 2023 Mar 08.
Article in English | MEDLINE | ID: covidwho-2257228

ABSTRACT

BACKGROUND: SARS-CoV-2 genomic and subgenomic RNA levels are frequently used as a correlate of infectiousness. The impact of host factors and SARS-CoV-2 lineage on RNA viral load is unclear. METHODS: Total nucleocapsid (N) and subgenomic N (sgN) RNA levels were measured by RT-qPCR in specimens from 3,204 individuals hospitalized with COVID-19 at 21 hospitals. RT-qPCR cycle threshold (Ct) values were used to estimate RNA viral load. The impact of time of sampling, SARS-CoV-2 variant, age, comorbidities, vaccination, and immune status on N and sgN Ct values were evaluated using multiple linear regression. RESULTS: Ct values at presentation for N (mean ±standard deviation) were 24.14±4.53 for non-variants of concern, 25.15±4.33 for Alpha, 25.31±4.50 for Delta, and 26.26±4.42 for Omicron. N and sgN RNA levels varied with time since symptom onset and infecting variant but not with age, comorbidity, immune status, or vaccination. When normalized to total N RNA, sgN levels were similar across all variants. CONCLUSIONS: RNA viral loads were similar among hospitalized adults, irrespective of infecting variant and known risk factors for severe COVID-19. Total N and subgenomic RNA N viral loads were highly correlated, suggesting that subgenomic RNA measurements adds little information for the purposes of estimating infectivity.

6.
Clin Infect Dis ; 2022 May 17.
Article in English | MEDLINE | ID: covidwho-2236202

ABSTRACT

BACKGROUND: COVID-19 mRNA vaccines were authorized in the United States in December 2020. Although vaccine effectiveness (VE) against mild infection declines markedly after several months, limited understanding exists on the long-term durability of protection against COVID-19-associated hospitalization. METHODS: Case control analysis of adults (≥18 years) hospitalized at 21 hospitals in 18 states March 11 - December 15, 2021, including COVID-19 case patients and RT-PCR-negative controls. We included adults who were unvaccinated or vaccinated with two doses of a mRNA vaccine before the date of illness onset. VE over time was assessed using logistic regression comparing odds of vaccination in cases versus controls, adjusting for confounders. Models included dichotomous time (<180 vs ≥180 days since dose two) and continuous time modeled using restricted cubic splines. RESULTS: 10,078 patients were included, 4906 cases (23% vaccinated) and 5172 controls (62% vaccinated). Median age was 60 years (IQR 46-70), 56% were non-Hispanic White, and 81% had ≥1 medical condition. Among immunocompetent adults, VE <180 days was 90% (95%CI: 88-91) vs 82% (95%CI: 79-85) at ≥180 days (p < 0.001). VE declined for Pfizer-BioNTech (88% to 79%, p < 0.001) and Moderna (93% to 87%, p < 0.001) products, for younger adults (18-64 years) [91% to 87%, p = 0.005], and for adults ≥65 years of age (87% to 78%, p < 0.001). In models using restricted cubic splines, similar changes were observed. CONCLUSION: In a period largely pre-dating Omicron variant circulation, effectiveness of two mRNA doses against COVID-19-associated hospitalization was largely sustained through 9 months.

7.
Ann Emerg Med ; 2022 Nov 03.
Article in English | MEDLINE | ID: covidwho-2233404

ABSTRACT

STUDY OBJECTIVE: To describe endotracheal intubation practices in emergency departments by staff intubating patients early in the coronavirus disease 2019 (COVID-19) pandemic. METHODS: Multicenter prospective cohort study of endotracheal intubations conducted at 20 US academic emergency departments from May to December 2020, stratified by known or suspected COVID-19 status. We used multivariable regression to measure the association between intubation strategy, COVID-19 known or suspected status, first-pass success, and adverse events. RESULTS: There were 3,435 unique emergency department endotracheal intubations by 586 participating physicians or advanced practice providers; 565 (18%) patients were known or suspected of having COVID-19 at the time of endotracheal intubation. Compared with patients not known or suspected of COVID-19, endotracheal intubations of patients with known or suspected COVID-19 were more often performed using video laryngoscopy (88% versus 82%, difference 6.3%; 95% confidence interval [CI], 3.0% to 9.6%) and passive nasal oxygenation (44% versus 39%, difference 5.1%; 95% CI, 0.9% to 9.3%). First-pass success was not different between those who were and were not known or suspected of COVID-19 (87% versus 86%, difference 0.6%; 95% CI, -2.4% to 3.6%). Adjusting for patient characteristics and procedure factors in those with low anticipated airway difficulty (n=2,374), adverse events (most commonly hypoxia) occurred more frequently in patients with known or suspected COVID-19 (35% versus 19%, adjusted odds ratio 2.4; 95% CI, 1.7 to 3.3). CONCLUSION: Compared with patients not known or suspected of COVID-19, endotracheal intubation of those confirmed or suspected to have COVID-19 was associated with a similar first-pass intubation success rate but higher risk-adjusted adverse events.

8.
BMJ Open ; 13(2): e063141, 2023 02 02.
Article in English | MEDLINE | ID: covidwho-2223661

ABSTRACT

OBJECTIVES: Although COVID-19 vaccines offer protection against infection and severe disease, there is limited information on the effect of vaccination on prolonged symptoms following COVID-19. Our objective was to determine differences in prevalence of prolonged symptoms 6 weeks after onset of COVID-19 among healthcare personnel (HCP) by vaccination status, and to assess differences in timing of return to work. DESIGN: Cohort analysis of HCP with COVID-19 enrolled in a multicentre vaccine effectiveness study. HCP with COVID-19 between December 2020 and August 2021 were followed up 6 weeks after illness onset. SETTING: Health systems in 12 US states. PARTICIPANTS: HCP participating in a vaccine effectiveness study were eligible for inclusion if they had laboratory-confirmed symptomatic SARS-CoV-2 with mRNA vaccination (symptom onset ≥14 days after two doses) or no prior vaccination. Among 681 eligible participants, 419 (61%) completed a follow-up survey to assess symptoms reported 6 weeks after illness onset. EXPOSURES: Two doses of a COVID-19 mRNA vaccine compared with no COVID-19 vaccine. MAIN OUTCOME MEASURES: Prevalence of symptoms 6 weeks after onset of COVID-19 illness and days to return to work. RESULTS: Among 419 HCP with COVID-19, 298 (71%) reported one or more COVID-like symptoms 6 weeks after illness onset, with a lower prevalence among vaccinated participants compared with unvaccinated participants (60.6% vs 79.1%; adjusted risk ratio 0.70, 95% CI 0.58 to 0.84). Following their illness, vaccinated HCP returned to work a median 2.0 days (95% CI 1.0 to 3.0) sooner than unvaccinated HCP (adjusted HR 1.37, 95% CI 1.04 to 1.79). CONCLUSIONS: Receipt of two doses of a COVID-19 mRNA vaccine among HCP with COVID-19 illness was associated with decreased prevalence of COVID-like symptoms at 6 weeks and earlier return to work.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Prospective Studies , SARS-CoV-2 , Vaccination , mRNA Vaccines , Delivery of Health Care
9.
Open Forum Infect Dis ; 10(1): ofac698, 2023 Jan.
Article in English | MEDLINE | ID: covidwho-2212869

ABSTRACT

Background: Coronavirus disease 2019 (COVID-19) vaccine effectiveness (VE) studies are increasingly reporting relative VE (rVE) comparing a primary series plus booster doses with a primary series only. Interpretation of rVE differs from traditional studies measuring absolute VE (aVE) of a vaccine regimen against an unvaccinated referent group. We estimated aVE and rVE against COVID-19 hospitalization in primary-series plus first-booster recipients of COVID-19 vaccines. Methods: Booster-eligible immunocompetent adults hospitalized at 21 medical centers in the United States during December 25, 2021-April 4, 2022 were included. In a test-negative design, logistic regression with case status as the outcome and completion of primary vaccine series or primary series plus 1 booster dose as the predictors, adjusted for potential confounders, were used to estimate aVE and rVE. Results: A total of 2060 patients were analyzed, including 1104 COVID-19 cases and 956 controls. Relative VE against COVID-19 hospitalization in boosted mRNA vaccine recipients versus primary series only was 66% (95% confidence interval [CI], 55%-74%); aVE was 81% (95% CI, 75%-86%) for boosted versus 46% (95% CI, 30%-58%) for primary. For boosted Janssen vaccine recipients versus primary series, rVE was 49% (95% CI, -9% to 76%); aVE was 62% (95% CI, 33%-79%) for boosted versus 36% (95% CI, -4% to 60%) for primary. Conclusions: Vaccine booster doses increased protection against COVID-19 hospitalization compared with a primary series. Comparing rVE measures across studies can lead to flawed interpretations of the added value of a new vaccination regimen, whereas difference in aVE, when available, may be a more useful metric.

10.
MMWR Morb Mortal Wkly Rep ; 71(5152): 1625-1630, 2022 Dec 30.
Article in English | MEDLINE | ID: covidwho-2204208

ABSTRACT

Monovalent COVID-19 mRNA vaccines, designed against the ancestral strain of SARS-CoV-2, successfully reduced COVID-19-related morbidity and mortality in the United States and globally (1,2). However, vaccine effectiveness (VE) against COVID-19-associated hospitalization has declined over time, likely related to a combination of factors, including waning immunity and, with the emergence of the Omicron variant and its sublineages, immune evasion (3). To address these factors, on September 1, 2022, the Advisory Committee on Immunization Practices recommended a bivalent COVID-19 mRNA booster (bivalent booster) dose, developed against the spike protein from ancestral SARS-CoV-2 and Omicron BA.4/BA.5 sublineages, for persons who had completed at least a primary COVID-19 vaccination series (with or without monovalent booster doses) ≥2 months earlier (4). Data on the effectiveness of a bivalent booster dose against COVID-19 hospitalization in the United States are lacking, including among older adults, who are at highest risk for severe COVID-19-associated illness. During September 8-November 30, 2022, the Investigating Respiratory Viruses in the Acutely Ill (IVY) Network§ assessed effectiveness of a bivalent booster dose received after ≥2 doses of monovalent mRNA vaccine against COVID-19-associated hospitalization among immunocompetent adults aged ≥65 years. When compared with unvaccinated persons, VE of a bivalent booster dose received ≥7 days before illness onset (median = 29 days) against COVID-19-associated hospitalization was 84%. Compared with persons who received ≥2 monovalent-only mRNA vaccine doses, relative VE of a bivalent booster dose was 73%. These early findings show that a bivalent booster dose provided strong protection against COVID-19-associated hospitalization in older adults and additional protection among persons with previous monovalent-only mRNA vaccination. All eligible persons, especially adults aged ≥65 years, should receive a bivalent booster dose to maximize protection against COVID-19 hospitalization this winter season. Additional strategies to prevent respiratory illness, such as masking in indoor public spaces, should also be considered, especially in areas where COVID-19 community levels are high (4,5).


Subject(s)
COVID-19 , Humans , Aged , COVID-19/epidemiology , COVID-19/prevention & control , SARS-CoV-2 , COVID-19 Vaccines , Vaccine Efficacy , Hospitalization , RNA, Messenger , Vaccines, Combined
11.
Vaccine ; 40(48): 6979-6986, 2022 Nov 15.
Article in English | MEDLINE | ID: covidwho-2082297

ABSTRACT

BACKGROUND: Test-negative design (TND) studies have produced validated estimates of vaccine effectiveness (VE) for influenza vaccine studies. However, syndrome-negative controls have been proposed for differentiating bias and true estimates in VE evaluations for COVID-19. To understand the use of alternative control groups, we compared characteristics and VE estimates of syndrome-negative and test-negative VE controls. METHODS: Adults hospitalized at 21 medical centers in 18 states March 11-August 31, 2021 were eligible for analysis. Case patients had symptomatic acute respiratory infection (ARI) and tested positive for SARS-CoV-2. Control groups were test-negative patients with ARI but negative SARS-CoV-2 testing, and syndrome-negative controls were without ARI and negative SARS-CoV-2 testing. Chi square and Wilcoxon rank sum tests were used to detect differences in baseline characteristics. VE against COVID-19 hospitalization was calculated using logistic regression comparing adjusted odds of prior mRNA vaccination between cases hospitalized with COVID-19 and each control group. RESULTS: 5811 adults (2726 cases, 1696 test-negative controls, and 1389 syndrome-negative controls) were included. Control groups differed across characteristics including age, race/ethnicity, employment, previous hospitalizations, medical conditions, and immunosuppression. However, control-group-specific VE estimates were very similar. Among immunocompetent patients aged 18-64 years, VE was 93 % (95 % CI: 90-94) using syndrome-negative controls and 91 % (95 % CI: 88-93) using test-negative controls. CONCLUSIONS: Despite demographic and clinical differences between control groups, the use of either control group produced similar VE estimates across age groups and immunosuppression status. These findings support the use of test-negative controls and increase confidence in COVID-19 VE estimates produced by test-negative design studies.


Subject(s)
COVID-19 , Influenza Vaccines , Influenza, Human , Humans , Adult , United States/epidemiology , Influenza, Human/prevention & control , COVID-19 Vaccines , SARS-CoV-2 , COVID-19/prevention & control , COVID-19 Testing , Vaccine Efficacy , Case-Control Studies , Hospitalization , Syndrome
12.
MMWR Morb Mortal Wkly Rep ; 71(42): 1327-1334, 2022 Oct 21.
Article in English | MEDLINE | ID: covidwho-2081112

ABSTRACT

The SARS-CoV-2 Omicron variant (B.1.1.529 or BA.1) became predominant in the United States by late December 2021 (1). BA.1 has since been replaced by emerging lineages BA.2 (including BA.2.12.1) in March 2022, followed by BA.4 and BA.5, which have accounted for a majority of SARS-CoV-2 infections since late June 2022 (1). Data on the effectiveness of monovalent mRNA COVID-19 vaccines against BA.4/BA.5-associated hospitalizations are limited, and their interpretation is complicated by waning of vaccine-induced immunity (2-5). Further, infections with earlier Omicron lineages, including BA.1 and BA.2, reduce vaccine effectiveness (VE) estimates because certain persons in the referent unvaccinated group have protection from infection-induced immunity. The IVY Network† assessed effectiveness of 2, 3, and 4 doses of monovalent mRNA vaccines compared with no vaccination against COVID-19-associated hospitalization among immunocompetent adults aged ≥18 years during December 26, 2021-August 31, 2022. During the BA.1/BA.2 period, VE 14-150 days after a second dose was 63% and decreased to 34% after 150 days. Similarly, VE 7-120 days after a third dose was 79% and decreased to 41% after 120 days. VE 7-120 days after a fourth dose was 61%. During the BA.4/BA.5 period, similar trends were observed, although CIs for VE estimates between categories of time since the last dose overlapped. VE 14-150 days and >150 days after a second dose was 83% and 37%, respectively. VE 7-120 days and >120 days after a third dose was 60%and 29%, respectively. VE 7-120 days after the fourth dose was 61%. Protection against COVID-19-associated hospitalization waned even after a third dose. The newly authorized bivalent COVID-19 vaccines include mRNA from the ancestral SARS-CoV-2 strain and from shared mRNA components between BA.4 and BA.5 lineages and are expected to be more immunogenic against BA.4/BA.5 than monovalent mRNA COVID-19 vaccines (6-8). All eligible adults aged ≥18 years§ should receive a booster dose, which currently consists of a bivalent mRNA vaccine, to maximize protection against BA.4/BA.5 and prevent COVID-19-associated hospitalization.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , United States/epidemiology , Humans , Adolescent , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Hospitalization , Vaccines, Combined , RNA, Messenger
14.
Clin Infect Dis ; 75(Supplement_2): S159-S166, 2022 Oct 03.
Article in English | MEDLINE | ID: covidwho-2077717

ABSTRACT

Background . Adults in the United States (US) began receiving the adenovirus vector coronavirus disease 2019 (COVID-19) vaccine, Ad26.COV2.S (Johnson & Johnson [Janssen]), in February 2021. We evaluated Ad26.COV2.S vaccine effectiveness (VE) against COVID-19 hospitalization and high disease severity during the first 10 months of its use. Methods . In a multicenter case-control analysis of US adults (≥18 years) hospitalized 11 March to 15 December 2021, we estimated VE against susceptibility to COVID-19 hospitalization (VEs), comparing odds of prior vaccination with a single dose Ad26.COV2.S vaccine between hospitalized cases with COVID-19 and controls without COVID-19. Among hospitalized patients with COVID-19, we estimated VE against disease progression (VEp) to death or invasive mechanical ventilation (IMV), comparing odds of prior vaccination between patients with and without progression. Results . After excluding patients receiving mRNA vaccines, among 3979 COVID-19 case-patients (5% vaccinated with Ad26.COV2.S) and 2229 controls (13% vaccinated with Ad26.COV2.S), VEs of Ad26.COV2.S against COVID-19 hospitalization was 70% (95% confidence interval [CI]: 63-75%) overall, including 55% (29-72%) among immunocompromised patients, and 72% (64-77%) among immunocompetent patients, for whom VEs was similar at 14-90 days (73% [59-82%]), 91-180 days (71% [60-80%]), and 181-274 days (70% [54-81%]) postvaccination. Among hospitalized COVID-19 case-patients, VEp was 46% (18-65%) among immunocompetent patients. Conclusions . The Ad26.COV2.S COVID-19 vaccine reduced the risk of COVID-19 hospitalization by 72% among immunocompetent adults without waning through 6 months postvaccination. After hospitalization for COVID-19, vaccinated immunocompetent patients were less likely to require IMV or die compared to unvaccinated immunocompetent patients.


Subject(s)
COVID-19 , Influenza Vaccines , Influenza, Human , Ad26COVS1 , Adult , COVID-19/prevention & control , COVID-19 Vaccines , Hospitalization , Humans , Influenza, Human/prevention & control , Severity of Illness Index , United States/epidemiology
15.
medRxiv ; 2021 Jul 08.
Article in English | MEDLINE | ID: covidwho-1978307

ABSTRACT

BACKGROUND: As SARS-CoV-2 vaccination coverage increases in the United States (US), there is a need to understand the real-world effectiveness against severe Covid-19 and among people at increased risk for poor outcomes. METHODS: In a multicenter case-control analysis of US adults hospitalized March 11 - May 5, 2021, we evaluated vaccine effectiveness to prevent Covid-19 hospitalizations by comparing odds of prior vaccination with an mRNA vaccine (Pfizer-BioNTech or Moderna) between cases hospitalized with Covid-19 and hospital-based controls who tested negative for SARS-CoV-2. RESULTS: Among 1210 participants, median age was 58 years, 22.8% were Black, 13.8% were Hispanic, and 20.6% had immunosuppression. SARS-CoV-2 lineage B.1.1.7 was most common variant (59.7% of sequenced viruses). Full vaccination (receipt of two vaccine doses ≥14 days before illness onset) had been received by 45/590 (7.6%) cases and 215/620 (34.7%) controls. Overall vaccine effectiveness was 86.9% (95% CI: 80.4 to 91.2%). Vaccine effectiveness was similar for Pfizer-BioNTech and Moderna vaccines, and highest in adults aged 18-49 years (97.3%; 95% CI: 78.9 to 99.7%). Among 45 patients with vaccine-breakthrough Covid hospitalizations, 44 (97.8%) were ≥50 years old and 20 (44.4%) had immunosuppression. Vaccine effectiveness was lower among patients with immunosuppression (59.2%; 95% CI: 11.9 to 81.1%) than without immunosuppression (91.3%; 95% CI: 85.5 to 94.7%). CONCLUSION: During March-May 2021, SARS-CoV-2 mRNA vaccines were highly effective for preventing Covid-19 hospitalizations among US adults. SARS-CoV-2 vaccination was beneficial for patients with immunosuppression, but effectiveness was lower in the immunosuppressed population.

16.
PLoS One ; 17(7): e0271597, 2022.
Article in English | MEDLINE | ID: covidwho-1957105

ABSTRACT

OBJECTIVES: Emergency department (ED) health care personnel (HCP) are at risk of exposure to SARS-CoV-2. The objective of this study was to determine the attributable risk of SARS-CoV-2 infection from providing ED care, describe personal protective equipment use, and identify modifiable ED risk factors. We hypothesized that providing ED patient care increases the probability of acquiring SARS-CoV-2 infection. METHODS: We conducted a multicenter prospective cohort study of 1,673 ED physicians, advanced practice providers (APPs), nurses, and nonclinical staff at 20 U.S. centers over 20 weeks (May to December 2020; before vaccine availability) to detect a four-percentage point increased SARS-CoV-2 incidence among HCP related to direct patient care. Participants provided monthly nasal and serology specimens and weekly exposure and procedure information. We used multivariable regression and recursive partitioning to identify risk factors. RESULTS: Over 29,825 person-weeks, 75 participants (4.5%) acquired SARS-CoV-2 infection (31 were asymptomatic). Physicians/APPs (aOR 1.07; 95% CI 0.56-2.03) did not have higher risk of becoming infected compared to nonclinical staff, but nurses had a marginally increased risk (aOR 1.91; 95% CI 0.99-3.68). Over 99% of participants used CDC-recommended personal protective equipment (PPE), but PPE lapses occurred in 22.1% of person-weeks and 32.1% of SARS-CoV-2-infected patient intubations. The following factors were associated with infection: household SARS-CoV-2 exposure; hospital and community SARS-CoV-2 burden; community exposure; and mask non-use in public. SARS-CoV-2 intubation was not associated with infection (attributable risk fraction 13.8%; 95% CI -2.0-38.2%), and nor were PPE lapses. CONCLUSIONS: Among unvaccinated U.S. ED HCP during the height of the pandemic, the risk of SARS-CoV-2 infection was similar in nonclinical staff and HCP engaged in direct patient care. Many identified risk factors were related to community exposures.


Subject(s)
COVID-19 , COVID-19/epidemiology , Emergency Service, Hospital , Health Personnel , Humans , Patient Care , Prospective Studies , SARS-CoV-2
17.
Crit Care ; 26(1): 179, 2022 06 15.
Article in English | MEDLINE | ID: covidwho-1951304

ABSTRACT

BACKGROUND: Mechanically ventilated patients have experienced greater periods of prolonged deep sedation during the coronavirus disease (COVID-19) pandemic. Multiple studies from the pre-COVID era demonstrate that early deep sedation is associated with worse outcome. Despite this, there is a lack of data on sedation depth and its impact on outcome for mechanically ventilated patients during the COVID-19 pandemic. We sought to characterize the emergency department (ED) and intensive care unit (ICU) sedation practices during the COVID-19 pandemic, and to determine if early deep sedation was associated with worse clinical outcomes. STUDY DESIGN AND METHODS: Dual-center, retrospective cohort study conducted over 6 months (March-August, 2020), involving consecutive, mechanically ventilated adults. All sedation-related data during the first 48 h were collected. Deep sedation was defined as Richmond Agitation-Sedation Scale of - 3 to - 5 or Riker Sedation-Agitation Scale of 1-3. To examine impact of early sedation depth on hospital mortality (primary outcome), we used a multivariable logistic regression model. Secondary outcomes included ventilator-, ICU-, and hospital-free days. RESULTS: 391 patients were studied, and 283 (72.4%) experienced early deep sedation. Deeply sedated patients received higher cumulative doses of fentanyl, propofol, midazolam, and ketamine when compared to light sedation. Deep sedation patients experienced fewer ventilator-, ICU-, and hospital-free days, and greater mortality (30.4% versus 11.1%) when compared to light sedation (p < 0.01 for all). After adjusting for confounders, early deep sedation remained significantly associated with higher mortality (adjusted OR 3.44; 95% CI 1.65-7.17; p < 0.01). These results were stable in the subgroup of patients with COVID-19. CONCLUSIONS: The management of sedation for mechanically ventilated patients in the ICU has changed during the COVID pandemic. Early deep sedation is common and independently associated with worse clinical outcomes. A protocol-driven approach to sedation, targeting light sedation as early as possible, should continue to remain the default approach.


Subject(s)
COVID-19 , Deep Sedation , Adult , Cohort Studies , Deep Sedation/methods , Humans , Hypnotics and Sedatives/therapeutic use , Intensive Care Units , Pandemics , Respiration, Artificial/methods , Retrospective Studies
18.
Influenza Other Respir Viruses ; 16(6): 1101-1111, 2022 11.
Article in English | MEDLINE | ID: covidwho-1927596

ABSTRACT

BACKGROUND: During the COVID-19 pandemic, self-reported COVID-19 vaccination might facilitate rapid evaluations of vaccine effectiveness (VE) when source documentation (e.g., immunization information systems [IIS]) is not readily available. We evaluated the concordance of COVID-19 vaccination status ascertained by self-report versus source documentation and its impact on VE estimates. METHODS: Hospitalized adults (≥18 years) admitted to 18 U.S. medical centers March-June 2021 were enrolled, including COVID-19 cases and SARS-CoV-2 negative controls. Patients were interviewed about COVID-19 vaccination. Abstractors simultaneously searched IIS, medical records, and other sources for vaccination information. To compare vaccination status by self-report and documentation, we estimated percent agreement and unweighted kappa with 95% confidence intervals (CIs). We then calculated VE in preventing COVID-19 hospitalization of full vaccination (2 doses of mRNA product ≥14 days prior to illness onset) independently using data from self-report or source documentation. RESULTS: Of 2520 patients, 594 (24%) did not have self-reported vaccination information to assign vaccination group; these patients tended to be more severely ill. Among 1924 patients with both self-report and source documentation information, 95.0% (95% CI: 93.9-95.9%) agreement was observed, with a kappa of 0.9127 (95% CI: 0.9109-0.9145). VE was 86% (95% CI: 81-90%) by self-report data only and 85% (95% CI: 81-89%) by source documentation data only. CONCLUSIONS: Approximately one-quarter of hospitalized patients could not provide self-report COVID-19 vaccination status. Among patients with self-report information, there was high concordance with source documented status. Self-report may be a reasonable source of COVID-19 vaccination information for timely VE assessment for public health action.


Subject(s)
COVID-19 Vaccines , COVID-19 , Adult , COVID-19/epidemiology , COVID-19/prevention & control , Documentation , Humans , Pandemics , RNA, Messenger , SARS-CoV-2 , Self Report , Vaccination , Vaccine Efficacy
19.
Am J Emerg Med ; 59: 79-84, 2022 09.
Article in English | MEDLINE | ID: covidwho-1914108

ABSTRACT

BACKGROUND: Due to limited community resources for mental health and long travel distances, emergency departments (EDs) serve as the safety net for many rural residents facing crisis mental health care. In 2019, The Leona M. and Harry B. Helmsley Charitable Trust funded a project to establish and implement an ED-based telepsychiatry service for patients with mental health issues in underserved areas. The purpose of this study was to evaluate the implementation of this novel ED-based telepsychiatry service. METHODS: This was a mixed-methods study evaluating the new ED-based telepsychiatry consult service implemented in five EDs across three rural states that participated within a mature hub-and-spoke telemedicine network between June 2019 and December 2020. Quantitative evaluation in this study included characteristics of the telehealth encounters and the patient population for whom this service was used. For qualitative assessments, we identified key themes from interviews with key informants at the ED spokes to assess overall facilitators, barriers, and impact. Integrating the quantitative and qualitative findings, we explored emergent phenomena and identified insights to provide a comprehensive perspective of the implementation process. RESULTS: There were 4130 encounters for 3932 patients from the EDs during the evaluation period. Approximately 54% of encounters involved female patients. The majority of patients seen were white (51%) or Native American (44%) reflecting the population of the communities where the EDs were located. Among the indications for the telepsychiatry consult, the most frequently identified were depression (28%), suicide/self-harm (17%), and schizophrenia (12%). Across sites, 99% of clinician-to-clinician consults were by phone, and 99% of clinical assessments/evaluations were by video. The distribution of encounters varied by the day of the week and the time of day. Facilitators for the service included increasing need, a supportive infrastructure, a straightforward process, familiarity with telemedicine, and a collaborative relationship. Barriers identified by respondents at the sites included the lack of clarity of process and technical limitations. The themes emerging from the impact of the telepsychiatry consultation in the ED included workforce improvement, care improvement, patient satisfaction, cost-benefit, facilitating COVID care, and access improvement. CONCLUSIONS: Implementation of a telepsychiatry service in ED settings may be beneficial to the patient, local ED, and the underserved community. In this study, we found that implementing this service alleviated the burden of care during the COVID-19 pandemic, enhanced local site capability, and improved local ability to provide quality and effective care.


Subject(s)
COVID-19 , Psychiatry , Telemedicine , Emergency Service, Hospital , Female , Humans , Pandemics
20.
Crit Care Med ; 50(6): 924-934, 2022 06 01.
Article in English | MEDLINE | ID: covidwho-1874016

ABSTRACT

OBJECTIVES: To test the hypothesis that forced-air warming of critically ill afebrile sepsis patients improves immune function compared to standard temperature management. DESIGN: Single-center, prospective, open-label, randomized controlled trial. SETTING: One thousand two hundred-bed academic medical center. PATIENTS: Eligible patients were mechanically ventilated septic adults with: 1) a diagnosis of sepsis within 48 hours of enrollment; 2) anticipated need for mechanical ventilation of greater than 48 hours; and 3) a maximum temperature less than 38.3°C within the 24 hours prior to enrollment. Primary exclusion criteria included: immunologic diseases, immune-suppressing medications, and any existing condition sensitive to therapeutic hyperthermia (e.g., brain injury). The primary outcome was monocyte human leukocyte antigen (HLA)-DR expression, with secondary outcomes of CD3/CD28-induced interferon gamma (IFN-γ) production, mortality, and 28-day hospital-free days. INTERVENTIONS: External warming using a forced-air warming blanket for 48 hours, with a goal temperature 1.5°C above the lowest temperature documented in the previous 24 hours. MEASUREMENTS AND MAIN RESULTS: We enrolled 56 participants in the study. No differences were observed between the groups in HLA-DR expression (692 vs 2,002; p = 0.396) or IFN-γ production (31 vs 69; p = 0.678). Participants allocated to external warming had lower 28-day mortality (18% vs 43%; absolute risk reduction, 25%; 95% CI, 2-48%) and more 28-day hospital-free days (difference, 2.6 d; 95% CI, 0-11.6). CONCLUSIONS: Participants randomized to external forced-air warming did not have a difference in HLA-DR expression or IFN-γ production. In this pilot study, however, 28-day mortality was lower in the intervention group. Future research should seek to better elucidate the impact of temperature modulation on immune and nonimmune organ failure pathways in sepsis.


Subject(s)
COVID-19 , Hyperthermia, Induced , Sepsis , Adult , Critical Illness/therapy , HLA-DR Antigens , Humans , Pilot Projects , Prospective Studies , SARS-CoV-2 , Sepsis/therapy
SELECTION OF CITATIONS
SEARCH DETAIL