Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Mucosal Immunol ; 2022 Jul 15.
Article in English | MEDLINE | ID: covidwho-1937414

ABSTRACT

Children are less likely than adults to suffer severe symptoms when infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), while influenza A H1N1 severity is comparable across ages except for the very young or elderly. Airway epithelial cells play a vital role in the early defence against viruses via their barrier and immune functions. We investigated viral replication and immune responses in SARS-CoV-2-infected bronchial epithelial cells from healthy paediatric (n = 6; 2.5-5.6 years old) and adult (n = 4; 47-63 years old) subjects and compared cellular responses following infection with SARS-CoV-2 or Influenza A H1N1. While infection with either virus triggered robust transcriptional interferon responses, including induction of type I (IFNB1) and type III (IFNL1) interferons, markedly lower levels of interferons and inflammatory proteins (IL-6, IL-8) were released following SARS-CoV-2 compared to H1N1 infection. Only H1N1 infection caused disruption of the epithelial layer. Interestingly, H1N1 infection resulted in sustained upregulation of SARS-CoV-2 entry factors FURIN and NRP1. We did not find any differences in the epithelial response to SARS-CoV-2 infection between paediatric and adult cells. Overall, SARS-CoV-2 had diminished potential to replicate, affect morphology and evoke immune responses in bronchial epithelial cells compared to H1N1.

2.
Immunity ; 55(3): 542-556.e5, 2022 03 08.
Article in English | MEDLINE | ID: covidwho-1768197

ABSTRACT

Some patients hospitalized with acute COVID-19 suffer respiratory symptoms that persist for many months. We delineated the immune-proteomic landscape in the airways and peripheral blood of healthy controls and post-COVID-19 patients 3 to 6 months after hospital discharge. Post-COVID-19 patients showed abnormal airway (but not plasma) proteomes, with an elevated concentration of proteins associated with apoptosis, tissue repair, and epithelial injury versus healthy individuals. Increased numbers of cytotoxic lymphocytes were observed in individuals with greater airway dysfunction, while increased B cell numbers and altered monocyte subsets were associated with more widespread lung abnormalities. A one-year follow-up of some post-COVID-19 patients indicated that these abnormalities resolved over time. In summary, COVID-19 causes a prolonged change to the airway immune landscape in those with persistent lung disease, with evidence of cell death and tissue repair linked to the ongoing activation of cytotoxic T cells.


Subject(s)
B-Lymphocytes/immunology , COVID-19/immunology , Monocytes/immunology , Respiration Disorders/immunology , Respiratory System/immunology , SARS-CoV-2/physiology , T-Lymphocytes, Cytotoxic/immunology , Adult , Aged , COVID-19/complications , Female , Follow-Up Studies , Humans , Immunity, Cellular , Immunoproteins , Male , Middle Aged , Proteome , Respiration Disorders/etiology , Respiratory System/pathology
3.
BMJ Open Respir Res ; 8(1)2021 09.
Article in English | MEDLINE | ID: covidwho-1438096

ABSTRACT

INTRODUCTION: The COVID-19 pandemic has led to over 100 million cases worldwide. The UK has had over 4 million cases, 400 000 hospital admissions and 100 000 deaths. Many patients with COVID-19 suffer long-term symptoms, predominantly breathlessness and fatigue whether hospitalised or not. Early data suggest potentially severe long-term consequence of COVID-19 is development of long COVID-19-related interstitial lung disease (LC-ILD). METHODS AND ANALYSIS: The UK Interstitial Lung Disease Consortium (UKILD) will undertake longitudinal observational studies of patients with suspected ILD following COVID-19. The primary objective is to determine ILD prevalence at 12 months following infection and whether clinically severe infection correlates with severity of ILD. Secondary objectives will determine the clinical, genetic, epigenetic and biochemical factors that determine the trajectory of recovery or progression of ILD. Data will be obtained through linkage to the Post-Hospitalisation COVID platform study and community studies. Additional substudies will conduct deep phenotyping. The Xenon MRI investigation of Alveolar dysfunction Substudy will conduct longitudinal xenon alveolar gas transfer and proton perfusion MRI. The POST COVID-19 interstitial lung DiseasE substudy will conduct clinically indicated bronchoalveolar lavage with matched whole blood sampling. Assessments include exploratory single cell RNA and lung microbiomics analysis, gene expression and epigenetic assessment. ETHICS AND DISSEMINATION: All contributing studies have been granted appropriate ethical approvals. Results from this study will be disseminated through peer-reviewed journals. CONCLUSION: This study will ensure the extent and consequences of LC-ILD are established and enable strategies to mitigate progression of LC-ILD.


Subject(s)
COVID-19/complications , Lung Diseases, Interstitial , Humans , Longitudinal Studies , Lung Diseases, Interstitial/epidemiology , Observational Studies as Topic , Pandemics , Prospective Studies , United Kingdom/epidemiology
4.
Annals of the American Thoracic Society ; 18(6):1083, 2021.
Article in English | ProQuest Central | ID: covidwho-1287179

ABSTRACT

Myall et al provide a response to the comment of Denneny et al on their paper regarding the role for steroids in COVID-19-associated pneumonitis at six-week follow-up. Given the risk factors for severe COVID-19 pneumonitis, they agree that steroid therapy is not without risk in this group. Individual patient discussion was key, and hence, five patients did not commence steroid treatment after review. It is therefore worth noting that the quoted proportions of patients with comorbidity refers to the whole cohort referred to the interstitial lung disease (ILD) service and not to the treatment group, who had lower rates of comorbidity. All patients had weekly telephone support and diabetes team input as appropriate. As a result, they saw no major complications of treatment.

5.
EBioMedicine ; 69: 103439, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1275277

ABSTRACT

BACKGROUND: COVID-19 has been associated with Interstitial Lung Disease features. The immune transcriptomic overlap between Idiopathic Pulmonary Fibrosis (IPF) and COVID-19 has not been investigated. METHODS: we analyzed blood transcript levels of 50 genes known to predict IPF mortality in three COVID-19 and two IPF cohorts. The Scoring Algorithm of Molecular Subphenotypes (SAMS) was applied to distinguish high versus low-risk profiles in all cohorts. SAMS cutoffs derived from the COVID-19 Discovery cohort were used to predict intensive care unit (ICU) status, need for mechanical ventilation, and in-hospital mortality in the COVID-19 Validation cohort. A COVID-19 Single-cell RNA-sequencing cohort was used to identify the cellular sources of the 50-gene risk profiles. The same COVID-19 SAMS cutoffs were used to predict mortality in the IPF cohorts. FINDINGS: 50-gene risk profiles discriminated severe from mild COVID-19 in the Discovery cohort (P = 0·015) and predicted ICU admission, need for mechanical ventilation, and in-hospital mortality (AUC: 0·77, 0·75, and 0·74, respectively, P < 0·001) in the COVID-19 Validation cohort. In COVID-19, 50-gene expressing cells with a high-risk profile included monocytes, dendritic cells, and neutrophils, while low-risk profile-expressing cells included CD4+, CD8+ T lymphocytes, IgG producing plasmablasts, B cells, NK, and gamma/delta T cells. Same COVID-19 SAMS cutoffs were also predictive of mortality in the University of Chicago (HR:5·26, 95%CI:1·81-15·27, P = 0·0013) and Imperial College of London (HR:4·31, 95%CI:1·81-10·23, P = 0·0016) IPF cohorts. INTERPRETATION: 50-gene risk profiles in peripheral blood predict COVID-19 and IPF outcomes. The cellular sources of these gene expression changes suggest common innate and adaptive immune responses in both diseases. FUNDING: This work was supported in part by National Institute for Health Research Clinician Scientist Fellowship NIHR: CS-2013-13-017 (TMM); Action for Pulmonary Fibrosis Mike Bray fellowship (PLM); The National Heart, Lung, and Blood Institute (NHLBI) through award K01-HL-130704 (AJ); The University of South Florida (USF) Academic Support Fund and the USF Foundation, Ubben Fibrosis Fund (JHM).


Subject(s)
COVID-19/genetics , Transcriptome , Adult , Aged , Biomarkers/blood , COVID-19/blood , COVID-19/mortality , Female , Hospital Mortality , Humans , Male , Middle Aged , Survival Analysis
6.
Ann Am Thorac Soc ; 18(5): 799-806, 2021 05.
Article in English | MEDLINE | ID: covidwho-1219727

ABSTRACT

Rationale: The natural history of recovery from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remains unknown. Because fibrosis with persistent physiological deficit is a previously described feature of patients recovering from similar coronaviruses, treatment represents an early opportunity to modify the disease course, potentially preventing irreversible impairment.Objectives: Determine the incidence of and describe the progression of persistent inflammatory interstitial lung disease (ILD) following SARS-CoV-2 when treated with prednisolone.Methods: A structured assessment protocol screened for sequelae of SARS-CoV-2 pneumonitis. Eight hundred thirty-seven patients were assessed by telephone 4 weeks after discharge. Those with ongoing symptoms had outpatient assessment at 6 weeks. Thirty patients diagnosed with persistent interstitial lung changes at a multidisciplinary team meeting were reviewed in the interstitial lung disease service and offered treatment. These patients had persistent, nonimproving symptoms.Results: At 4 weeks after discharge, 39% of patients reported ongoing symptoms (325/837) and were assessed. Interstitial lung disease, predominantly organizing pneumonia, with significant functional deficit was observed in 35/837 survivors (4.8%). Thirty of these patients received steroid treatment, resulting in a mean relative increase in transfer factor following treatment of 31.6% (standard deviation [SD] ± 27.6, P < 0.001), and forced vital capacity of 9.6% (SD ± 13.0, P = 0.014), with significant symptomatic and radiological improvement.Conclusions: Following SARS-CoV-2 pneumonitis, a cohort of patients are left with both radiological inflammatory lung disease and persistent physiological and functional deficit. Early treatment with corticosteroids was well tolerated and associated with rapid and significant improvement. These preliminary data should inform further study into the natural history and potential treatment for patients with persistent inflammatory ILD following SARS-CoV-2 infection.


Subject(s)
Aftercare/methods , COVID-19/complications , Glucocorticoids/therapeutic use , Lung Diseases, Interstitial , Lung , Respiratory Function Tests/methods , COVID-19/mortality , COVID-19/therapy , Female , Hospitalization/statistics & numerical data , Humans , Lung/diagnostic imaging , Lung/physiopathology , Lung/virology , Lung Diseases, Interstitial/diagnosis , Lung Diseases, Interstitial/etiology , Lung Diseases, Interstitial/physiopathology , Lung Diseases, Interstitial/therapy , Male , Middle Aged , Patient Discharge/statistics & numerical data , SARS-CoV-2/isolation & purification , Survivors/statistics & numerical data , Symptom Assessment/methods , Symptom Assessment/statistics & numerical data , Tomography, X-Ray Computed/methods , Treatment Outcome , United Kingdom/epidemiology
8.
Thorax ; 76(7): 696-703, 2021 07.
Article in English | MEDLINE | ID: covidwho-1127610

ABSTRACT

INTRODUCTION: Risk factors of adverse outcomes in COVID-19 are defined but stratification of mortality using non-laboratory measured scores, particularly at the time of prehospital SARS-CoV-2 testing, is lacking. METHODS: Multivariate regression with bootstrapping was used to identify independent mortality predictors in patients admitted to an acute hospital with a confirmed diagnosis of COVID-19. Predictions were externally validated in a large random sample of the ISARIC cohort (N=14 231) and a smaller cohort from Aintree (N=290). RESULTS: 983 patients (median age 70, IQR 53-83; in-hospital mortality 29.9%) were recruited over an 11-week study period. Through sequential modelling, a five-predictor score termed SOARS (SpO2, Obesity, Age, Respiratory rate, Stroke history) was developed to correlate COVID-19 severity across low, moderate and high strata of mortality risk. The score discriminated well for in-hospital death, with area under the receiver operating characteristic values of 0.82, 0.80 and 0.74 in the derivation, Aintree and ISARIC validation cohorts, respectively. Its predictive accuracy (calibration) in both external cohorts was consistently higher in patients with milder disease (SOARS 0-1), the same individuals who could be identified for safe outpatient monitoring. Prediction of a non-fatal outcome in this group was accompanied by high score sensitivity (99.2%) and negative predictive value (95.9%). CONCLUSION: The SOARS score uses constitutive and readily assessed individual characteristics to predict the risk of COVID-19 death. Deployment of the score could potentially inform clinical triage in preadmission settings where expedient and reliable decision-making is key. The resurgence of SARS-CoV-2 transmission provides an opportunity to further validate and update its performance.


Subject(s)
COVID-19/mortality , Hospital Mortality , Hospitalization/statistics & numerical data , Monitoring, Ambulatory/statistics & numerical data , Pneumonia, Viral/mortality , Aged , Aged, 80 and over , Decision Making , Female , Humans , Male , Middle Aged , Pandemics , Pneumonia, Viral/virology , Predictive Value of Tests , Prognosis , Risk Factors , SARS-CoV-2 , Severity of Illness Index
9.
Am J Respir Crit Care Med ; 202(12): 1656-1665, 2020 12 15.
Article in English | MEDLINE | ID: covidwho-810560

ABSTRACT

Rationale: The impact of coronavirus disease (COVID-19) on patients with interstitial lung disease (ILD) has not been established.Objectives: To assess outcomes in patients with ILD hospitalized for COVID-19 versus those without ILD in a contemporaneous age-, sex-, and comorbidity-matched population.Methods: An international multicenter audit of patients with a prior diagnosis of ILD admitted to the hospital with COVID-19 between March 1 and May 1, 2020, was undertaken and compared with patients without ILD, obtained from the ISARIC4C (International Severe Acute Respiratory and Emerging Infection Consortium Coronavirus Clinical Characterisation Consortium) cohort, admitted with COVID-19 over the same period. The primary outcome was survival. Secondary analysis distinguished idiopathic pulmonary fibrosis from non-idiopathic pulmonary fibrosis ILD and used lung function to determine the greatest risks of death.Measurements and Main Results: Data from 349 patients with ILD across Europe were included, of whom 161 were admitted to the hospital with laboratory or clinical evidence of COVID-19 and eligible for propensity score matching. Overall mortality was 49% (79/161) in patients with ILD with COVID-19. After matching, patients with ILD with COVID-19 had significantly poorer survival (hazard ratio [HR], 1.60; confidence interval, 1.17-2.18; P = 0.003) than age-, sex-, and comorbidity-matched controls without ILD. Patients with an FVC of <80% had an increased risk of death versus patients with FVC ≥80% (HR, 1.72; 1.05-2.83). Furthermore, obese patients with ILD had an elevated risk of death (HR, 2.27; 1.39-3.71).Conclusions: Patients with ILD are at increased risk of death from COVID-19, particularly those with poor lung function and obesity. Stringent precautions should be taken to avoid COVID-19 in patients with ILD.


Subject(s)
COVID-19/epidemiology , Hospitalization/statistics & numerical data , Lung Diseases, Interstitial/epidemiology , Aged , Aged, 80 and over , Comorbidity , Disease Progression , Europe/epidemiology , Female , Humans , Lung Diseases, Interstitial/diagnosis , Lung Diseases, Interstitial/therapy , Male , Middle Aged , Retrospective Studies , SARS-CoV-2 , Tomography, X-Ray Computed
10.
Immunology ; 160(2): 171-182, 2020 06.
Article in English | MEDLINE | ID: covidwho-11413

ABSTRACT

The airway epithelium represents a physical barrier to the external environment acting as the first line of defence against potentially harmful environmental stimuli including microbes and allergens. However, lung epithelial cells are increasingly recognized as active effectors of microbial defence, contributing to both innate and adaptive immune function in the lower respiratory tract. These cells express an ample repertoire of pattern recognition receptors with specificity for conserved microbial and host motifs. Modern molecular techniques have uncovered the complexity of the lower respiratory tract microbiome. The interaction between the microbiota and the airway epithelium is key to understanding how stable immune homeostasis is maintained. Loss of epithelial integrity following exposure to infection can result in the onset of inflammation in susceptible individuals and may culminate in lung disease. Here we discuss the current knowledge regarding the molecular and cellular mechanisms by which the pulmonary epithelium interacts with the lung microbiome in shaping immunity in the lung. Specifically, we focus on the interactions between the lung microbiome and the cells of the conducting airways in modulating immune cell regulation, and how defects in barrier structure and function may culminate in lung disease. Understanding these interactions is fundamental in the search for more effective therapies for respiratory diseases.


Subject(s)
Epithelial Cells/immunology , Lung Diseases/immunology , Lung/immunology , Microbiota/immunology , Respiratory Mucosa/immunology , Adaptive Immunity , Airway Remodeling/immunology , Homeostasis/immunology , Host-Pathogen Interactions/immunology , Humans , Immunity, Innate , Immunity, Mucosal , Lung/cytology , Lung/microbiology , Lung Diseases/microbiology , Respiratory Mucosa/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL