Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Clin Infect Dis ; 2022 Jun 08.
Article in English | MEDLINE | ID: covidwho-1890901

ABSTRACT

BACKGROUND: Adults in the United States (US) began receiving the viral vector COVID-19 vaccine, Ad26.COV2.S (Johnson & Johnson [Janssen]), in February 2021. We evaluated Ad26.COV2.S vaccine effectiveness (VE) against COVID-19 hospitalization and high disease severity during the first 10 months of its use. METHODS: In a multicenter case-control analysis of US adults (≥18 years) hospitalized March 11-December 15, 2021, we estimated VE against susceptibility to COVID-19 hospitalization (VEs), comparing odds of prior vaccination with a single dose Ad26.COV2.S vaccine between hospitalized cases with COVID-19 and controls without COVID-19. Among hospitalized patients with COVID-19, we estimated VE against disease progression (VEp) to death or invasive mechanical ventilation (IMV), comparing odds of prior vaccination between patients with and without progression. RESULTS: After excluding patients receiving mRNA vaccines, among 3,979 COVID-19 case-patients (5% vaccinated with Ad26.COV2.S) and 2.229 controls (13% vaccinated with Ad26.COV2.S), VEs of Ad26.COV2.S against COVID-19 hospitalization was 70% (95% CI: 63%-75%) overall, including 55% (29%-72%) among immunocompromised patients, and 72% (64%-77%) among immunocompetent patients, for whom VEs was similar at 14-90 days (73% [59%-82%]), 91-180 days (71% [60%-80%]), and 181-274 days (70% [54%-81%]) post-vaccination. Among hospitalized COVID-19 case-patients, VEp was 46% (18%-65%) among immunocompetent patients. CONCLUSIONS: The Ad26.COV2.S COVID-19 vaccine reduced the risk of COVID-19 hospitalization by 72% among immunocompetent adults without waning through 6 months post-vaccination. After hospitalization for COVID-19, vaccinated immunocompetent patients were less likely to require IMV or die compared to unvaccinated immunocompetent patients.

2.
MMWR Morb Mortal Wkly Rep ; 71(12): 459-465, 2022 Mar 25.
Article in English | MEDLINE | ID: covidwho-1761302

ABSTRACT

COVID-19 mRNA vaccines (BNT162b2 [Pfizer-BioNTech] and mRNA-1273 [Moderna]) are effective at preventing COVID-19-associated hospitalization (1-3). However, how well mRNA vaccines protect against the most severe outcomes of these hospitalizations, including invasive mechanical ventilation (IMV) or death is uncertain. Using a case-control design, mRNA vaccine effectiveness (VE) against COVID-19-associated IMV and in-hospital death was evaluated among adults aged ≥18 years hospitalized at 21 U.S. medical centers during March 11, 2021-January 24, 2022. During this period, the most commonly circulating variants of SARS-CoV-2, the virus that causes COVID-19, were B.1.1.7 (Alpha), B.1.617.2 (Delta), and B.1.1.529 (Omicron). Previous vaccination (2 or 3 versus 0 vaccine doses before illness onset) in prospectively enrolled COVID-19 case-patients who received IMV or died within 28 days of hospitalization was compared with that among hospitalized control patients without COVID-19. Among 1,440 COVID-19 case-patients who received IMV or died, 307 (21%) had received 2 or 3 vaccine doses before illness onset. Among 6,104 control-patients, 4,020 (66%) had received 2 or 3 vaccine doses. Among the 1,440 case-patients who received IMV or died, those who were vaccinated were older (median age = 69 years), more likely to be immunocompromised* (40%), and had more chronic medical conditions compared with unvaccinated case-patients (median age = 55 years; immunocompromised = 10%; p<0.001 for both). VE against IMV or in-hospital death was 90% (95% CI = 88%-91%) overall, including 88% (95% CI = 86%-90%) for 2 doses and 94% (95% CI = 91%-96%) for 3 doses, and 94% (95% CI = 88%-97%) for 3 doses during the Omicron-predominant period. COVID-19 mRNA vaccines are highly effective in preventing COVID-19-associated death and respiratory failure treated with IMV. CDC recommends that all persons eligible for vaccination get vaccinated and stay up to date with COVID-19 vaccination (4).


Subject(s)
2019-nCoV Vaccine mRNA-1273 , BNT162 Vaccine , COVID-19/prevention & control , Respiration, Artificial , Vaccine Efficacy , COVID-19/mortality , Hospital Mortality , Humans , United States/epidemiology
3.
BMJ ; 376: e069761, 2022 03 09.
Article in English | MEDLINE | ID: covidwho-1736045

ABSTRACT

OBJECTIVES: To characterize the clinical severity of covid-19 associated with the alpha, delta, and omicron SARS-CoV-2 variants among adults admitted to hospital and to compare the effectiveness of mRNA vaccines to prevent hospital admissions related to each variant. DESIGN: Case-control study. SETTING: 21 hospitals across the United States. PARTICIPANTS: 11 690 adults (≥18 years) admitted to hospital: 5728 with covid-19 (cases) and 5962 without covid-19 (controls). Patients were classified into SARS-CoV-2 variant groups based on viral whole genome sequencing, and, if sequencing did not reveal a lineage, by the predominant circulating variant at the time of hospital admission: alpha (11 March to 3 July 2021), delta (4 July to 25 December 2021), and omicron (26 December 2021 to 14 January 2022). MAIN OUTCOME MEASURES: Vaccine effectiveness calculated using a test negative design for mRNA vaccines to prevent covid-19 related hospital admissions by each variant (alpha, delta, omicron). Among patients admitted to hospital with covid-19, disease severity on the World Health Organization's clinical progression scale was compared among variants using proportional odds regression. RESULTS: Effectiveness of the mRNA vaccines to prevent covid-19 associated hospital admissions was 85% (95% confidence interval 82% to 88%) for two vaccine doses against the alpha variant, 85% (83% to 87%) for two doses against the delta variant, 94% (92% to 95%) for three doses against the delta variant, 65% (51% to 75%) for two doses against the omicron variant; and 86% (77% to 91%) for three doses against the omicron variant. In-hospital mortality was 7.6% (81/1060) for alpha, 12.2% (461/3788) for delta, and 7.1% (40/565) for omicron. Among unvaccinated patients with covid-19 admitted to hospital, severity on the WHO clinical progression scale was higher for the delta versus alpha variant (adjusted proportional odds ratio 1.28, 95% confidence interval 1.11 to 1.46), and lower for the omicron versus delta variant (0.61, 0.49 to 0.77). Compared with unvaccinated patients, severity was lower for vaccinated patients for each variant, including alpha (adjusted proportional odds ratio 0.33, 0.23 to 0.49), delta (0.44, 0.37 to 0.51), and omicron (0.61, 0.44 to 0.85). CONCLUSIONS: mRNA vaccines were found to be highly effective in preventing covid-19 associated hospital admissions related to the alpha, delta, and omicron variants, but three vaccine doses were required to achieve protection against omicron similar to the protection that two doses provided against the delta and alpha variants. Among adults admitted to hospital with covid-19, the omicron variant was associated with less severe disease than the delta variant but still resulted in substantial morbidity and mortality. Vaccinated patients admitted to hospital with covid-19 had significantly lower disease severity than unvaccinated patients for all the variants.


Subject(s)
COVID-19 Vaccines , COVID-19/prevention & control , COVID-19/virology , SARS-CoV-2 , Case-Control Studies , Hospitalization , Humans , Immunization Schedule , Prospective Studies , Severity of Illness Index , United States
4.
Clin Infect Dis ; 2021 Aug 06.
Article in English | MEDLINE | ID: covidwho-1700456

ABSTRACT

BACKGROUND: As SARS-CoV-2 vaccination coverage increases in the United States (US), there is a need to understand the real-world effectiveness against severe Covid-19 and among people at increased risk for poor outcomes. METHODS: In a multicenter case-control analysis of US adults hospitalized March 11-May 5, 2021, we evaluated vaccine effectiveness to prevent Covid-19 hospitalizations by comparing odds of prior vaccination with an mRNA vaccine (Pfizer-BioNTech or Moderna) between cases hospitalized with Covid-19 and hospital-based controls who tested negative for SARS-CoV-2. RESULTS: Among 1212 participants, including 593 cases and 619 controls, median age was 58 years, 22.8% were Black, 13.9% were Hispanic, and 21.0% had immunosuppression. SARS-CoV-2 lineage B.1.1.7 (Alpha) was the most common variant (67.9% of viruses with lineage determined). Full vaccination (receipt of two vaccine doses ≥14 days before illness onset) had been received by 8.2% of cases and 36.4% of controls. Overall vaccine effectiveness was 87.1% (95% CI: 80.7 to 91.3%). Vaccine effectiveness was similar for Pfizer-BioNTech and Moderna vaccines, and highest in adults aged 18-49 years (97.4%; 95% CI: 79.3 to 99.7%). Among 45 patients with vaccine-breakthrough Covid hospitalizations, 44 (97.8%) were ≥50 years old and 20 (44.4%) had immunosuppression. Vaccine effectiveness was lower among patients with immunosuppression (62.9%; 95% CI: 20.8 to 82.6%) than without immunosuppression (91.3%; 95% CI: 85.6 to 94.8%). CONCLUSION: During March-May 2021, SARS-CoV-2 mRNA vaccines were highly effective for preventing Covid-19 hospitalizations among US adults. SARS-CoV-2 vaccination was beneficial for patients with immunosuppression, but effectiveness was lower in the immunosuppressed population.

5.
Influenza Other Respir Viruses ; 16(4): 673-679, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1685328

ABSTRACT

BACKGROUND: Individuals in contact with persons with COVID-19 are at high risk of developing COVID-19; protection offered by COVID-19 vaccines in the context of known exposure is poorly understood. METHODS: Symptomatic outpatients aged ≥12 years reporting acute onset of COVID-19-like illness and tested for SARS-CoV-2 between February 1 and September 30, 2021 were enrolled. Participants were stratified by self-report of having known contact with a COVID-19 case in the 14 days prior to illness onset. Vaccine effectiveness was evaluated using the test-negative study design and multivariable logistic regression. RESULTS: Among 2229 participants, 283/451 (63%) of those reporting contact and 331/1778 (19%) without known contact tested SARS-CoV-2-positive. Adjusted vaccine effectiveness was 71% (95% confidence interval [CI], 49%-83%) among fully vaccinated participants reporting a known contact versus 80% (95% CI, 72%-86%) among those with no known contact (p-value for interaction = 0.2). CONCLUSIONS: This study contributes to growing evidence of the benefits of vaccinations in preventing COVID-19 and support vaccination recommendations and the importance of efforts to increase vaccination coverage.


Subject(s)
COVID-19 , COVID-19/prevention & control , COVID-19 Vaccines , Humans , SARS-CoV-2 , Vaccination , Vaccine Efficacy
6.
J Infect Dis ; 2021 Sep 08.
Article in English | MEDLINE | ID: covidwho-1634069

ABSTRACT

Evaluations of vaccine effectiveness (VE) are important to monitor as COVID-19 vaccines are introduced in the general population. Research staff enrolled symptomatic participants seeking outpatient medical care for COVID-19-like illness or SARS-CoV-2 testing from a multisite network. VE was evaluated using the test-negative design. Among 236 SARS-CoV-2 nucleic acid amplification test-positive and 576 test-negative participants aged ≥16 years, VE of mRNA vaccines against COVID-19 was 91% (95% CI: 83-95) for full vaccination and 75% (95% CI: 55-87) for partial vaccination. Vaccination was associated with prevention of most COVID-19 cases among people seeking outpatient medical care.

7.
JAMA ; 326(20): 2043-2054, 2021 11 23.
Article in English | MEDLINE | ID: covidwho-1544165

ABSTRACT

Importance: A comprehensive understanding of the benefits of COVID-19 vaccination requires consideration of disease attenuation, determined as whether people who develop COVID-19 despite vaccination have lower disease severity than unvaccinated people. Objective: To evaluate the association between vaccination with mRNA COVID-19 vaccines-mRNA-1273 (Moderna) and BNT162b2 (Pfizer-BioNTech)-and COVID-19 hospitalization, and, among patients hospitalized with COVID-19, the association with progression to critical disease. Design, Setting, and Participants: A US 21-site case-control analysis of 4513 adults hospitalized between March 11 and August 15, 2021, with 28-day outcome data on death and mechanical ventilation available for patients enrolled through July 14, 2021. Date of final follow-up was August 8, 2021. Exposures: COVID-19 vaccination. Main Outcomes and Measures: Associations were evaluated between prior vaccination and (1) hospitalization for COVID-19, in which case patients were those hospitalized for COVID-19 and control patients were those hospitalized for an alternative diagnosis; and (2) disease progression among patients hospitalized for COVID-19, in which cases and controls were COVID-19 patients with and without progression to death or mechanical ventilation, respectively. Associations were measured with multivariable logistic regression. Results: Among 4513 patients (median age, 59 years [IQR, 45-69]; 2202 [48.8%] women; 23.0% non-Hispanic Black individuals, 15.9% Hispanic individuals, and 20.1% with an immunocompromising condition), 1983 were case patients with COVID-19 and 2530 were controls without COVID-19. Unvaccinated patients accounted for 84.2% (1669/1983) of COVID-19 hospitalizations. Hospitalization for COVID-19 was significantly associated with decreased likelihood of vaccination (cases, 15.8%; controls, 54.8%; adjusted OR, 0.15; 95% CI, 0.13-0.18), including for sequenced SARS-CoV-2 Alpha (8.7% vs 51.7%; aOR, 0.10; 95% CI, 0.06-0.16) and Delta variants (21.9% vs 61.8%; aOR, 0.14; 95% CI, 0.10-0.21). This association was stronger for immunocompetent patients (11.2% vs 53.5%; aOR, 0.10; 95% CI, 0.09-0.13) than immunocompromised patients (40.1% vs 58.8%; aOR, 0.49; 95% CI, 0.35-0.69) (P < .001) and weaker at more than 120 days since vaccination with BNT162b2 (5.8% vs 11.5%; aOR, 0.36; 95% CI, 0.27-0.49) than with mRNA-1273 (1.9% vs 8.3%; aOR, 0.15; 95% CI, 0.09-0.23) (P < .001). Among 1197 patients hospitalized with COVID-19, death or invasive mechanical ventilation by day 28 was associated with decreased likelihood of vaccination (12.0% vs 24.7%; aOR, 0.33; 95% CI, 0.19-0.58). Conclusions and Relevance: Vaccination with an mRNA COVID-19 vaccine was significantly less likely among patients with COVID-19 hospitalization and disease progression to death or mechanical ventilation. These findings are consistent with risk reduction among vaccine breakthrough infections compared with absence of vaccination.


Subject(s)
COVID-19 , Hospitalization/statistics & numerical data , Adult , Aged , COVID-19/classification , COVID-19/epidemiology , COVID-19/mortality , COVID-19/prevention & control , COVID-19 Vaccines/classification , Case-Control Studies , Disease Progression , Female , Humans , Male , Middle Aged , Respiration, Artificial , SARS-CoV-2 , Severity of Illness Index , Vaccination
9.
JAMA ; 326(20): 2043-2054, 2021 11 23.
Article in English | MEDLINE | ID: covidwho-1499190

ABSTRACT

Importance: A comprehensive understanding of the benefits of COVID-19 vaccination requires consideration of disease attenuation, determined as whether people who develop COVID-19 despite vaccination have lower disease severity than unvaccinated people. Objective: To evaluate the association between vaccination with mRNA COVID-19 vaccines-mRNA-1273 (Moderna) and BNT162b2 (Pfizer-BioNTech)-and COVID-19 hospitalization, and, among patients hospitalized with COVID-19, the association with progression to critical disease. Design, Setting, and Participants: A US 21-site case-control analysis of 4513 adults hospitalized between March 11 and August 15, 2021, with 28-day outcome data on death and mechanical ventilation available for patients enrolled through July 14, 2021. Date of final follow-up was August 8, 2021. Exposures: COVID-19 vaccination. Main Outcomes and Measures: Associations were evaluated between prior vaccination and (1) hospitalization for COVID-19, in which case patients were those hospitalized for COVID-19 and control patients were those hospitalized for an alternative diagnosis; and (2) disease progression among patients hospitalized for COVID-19, in which cases and controls were COVID-19 patients with and without progression to death or mechanical ventilation, respectively. Associations were measured with multivariable logistic regression. Results: Among 4513 patients (median age, 59 years [IQR, 45-69]; 2202 [48.8%] women; 23.0% non-Hispanic Black individuals, 15.9% Hispanic individuals, and 20.1% with an immunocompromising condition), 1983 were case patients with COVID-19 and 2530 were controls without COVID-19. Unvaccinated patients accounted for 84.2% (1669/1983) of COVID-19 hospitalizations. Hospitalization for COVID-19 was significantly associated with decreased likelihood of vaccination (cases, 15.8%; controls, 54.8%; adjusted OR, 0.15; 95% CI, 0.13-0.18), including for sequenced SARS-CoV-2 Alpha (8.7% vs 51.7%; aOR, 0.10; 95% CI, 0.06-0.16) and Delta variants (21.9% vs 61.8%; aOR, 0.14; 95% CI, 0.10-0.21). This association was stronger for immunocompetent patients (11.2% vs 53.5%; aOR, 0.10; 95% CI, 0.09-0.13) than immunocompromised patients (40.1% vs 58.8%; aOR, 0.49; 95% CI, 0.35-0.69) (P < .001) and weaker at more than 120 days since vaccination with BNT162b2 (5.8% vs 11.5%; aOR, 0.36; 95% CI, 0.27-0.49) than with mRNA-1273 (1.9% vs 8.3%; aOR, 0.15; 95% CI, 0.09-0.23) (P < .001). Among 1197 patients hospitalized with COVID-19, death or invasive mechanical ventilation by day 28 was associated with decreased likelihood of vaccination (12.0% vs 24.7%; aOR, 0.33; 95% CI, 0.19-0.58). Conclusions and Relevance: Vaccination with an mRNA COVID-19 vaccine was significantly less likely among patients with COVID-19 hospitalization and disease progression to death or mechanical ventilation. These findings are consistent with risk reduction among vaccine breakthrough infections compared with absence of vaccination.


Subject(s)
COVID-19 , Hospitalization/statistics & numerical data , Adult , Aged , COVID-19/classification , COVID-19/epidemiology , COVID-19/mortality , COVID-19/prevention & control , COVID-19 Vaccines/classification , Case-Control Studies , Disease Progression , Female , Humans , Male , Middle Aged , Respiration, Artificial , SARS-CoV-2 , Severity of Illness Index , Vaccination
10.
Clin Infect Dis ; 73(7): 1248-1256, 2021 10 05.
Article in English | MEDLINE | ID: covidwho-1452698

ABSTRACT

BACKGROUND: The evidence that influenza vaccination programs regularly provide protection to unvaccinated individuals (ie, indirect effects) of a community is lacking. We sought to determine the direct, indirect, and total effects of influenza vaccine in the Household Influenza Vaccine Evaluation (HIVE) cohort. METHODS: Using longitudinal data from the HIVE cohort from 2010-11 through 2017-18, we estimated direct, indirect, and total influenza vaccine effectiveness (VE) and the incidence rate ratio of influenza virus infection using adjusted mixed-effect Poisson regression models. Total effectiveness was determined through comparison of vaccinated members of full or partially vaccinated households to unvaccinated individuals in completely unvaccinated households. RESULTS: The pooled, direct VE against any influenza was 30.2% (14.0-43.4). Direct VE was higher for influenza A/H1N1 43.9% (3.9 to 63.5) and B 46.7% (17.2 to 57.5) than A/H3N2 31.7% (10.5 to 47.8) and was higher for young children 42.4% (10.1 to 63.0) than adults 18.6% (-6.3 to 37.7). Influenza incidence was highest in completely unvaccinated households (10.6 per 100 person-seasons) and lower at all other levels of household vaccination coverage. We found little evidence of indirect VE after adjusting for potential confounders. Total VE was 56.4% (30.1-72.9) in low coverage, 43.2% (19.5-59.9) in moderate coverage, and 33.0% (12.1 to 49.0) in fully vaccinated households. CONCLUSIONS: Influenza vaccines may have a benefit above and beyond the direct effect but that effect in this study was small. Although there may be exceptions, the goal of global vaccine recommendations should remain focused on provision of documented, direct protection to those vaccinated.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Influenza, Human , Adult , Child , Child, Preschool , Humans , Influenza A Virus, H3N2 Subtype , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Seasons , Vaccination
11.
MMWR Morb Mortal Wkly Rep ; 70(38): 1337-1343, 2021 Sep 24.
Article in English | MEDLINE | ID: covidwho-1436415

ABSTRACT

Three COVID-19 vaccines are authorized or approved for use among adults in the United States (1,2). Two 2-dose mRNA vaccines, mRNA-1273 from Moderna and BNT162b2 from Pfizer-BioNTech, received Emergency Use Authorization (EUA) by the Food and Drug Administration (FDA) in December 2020 for persons aged ≥18 years and aged ≥16 years, respectively. A 1-dose viral vector vaccine (Ad26.COV2 from Janssen [Johnson & Johnson]) received EUA in February 2021 for persons aged ≥18 years (3). The Pfizer-BioNTech vaccine received FDA approval for persons aged ≥16 years on August 23, 2021 (4). Current guidelines from FDA and CDC recommend vaccination of eligible persons with one of these three products, without preference for any specific vaccine (4,5). To assess vaccine effectiveness (VE) of these three products in preventing COVID-19 hospitalization, CDC and collaborators conducted a case-control analysis among 3,689 adults aged ≥18 years who were hospitalized at 21 U.S. hospitals across 18 states during March 11-August 15, 2021. An additional analysis compared serum antibody levels (anti-spike immunoglobulin G [IgG] and anti-receptor binding domain [RBD] IgG) to SARS-CoV-2, the virus that causes COVID-19, among 100 healthy volunteers enrolled at three hospitals 2-6 weeks after full vaccination with the Moderna, Pfizer-BioNTech, or Janssen COVID-19 vaccine. Patients with immunocompromising conditions were excluded. VE against COVID-19 hospitalizations was higher for the Moderna vaccine (93%; 95% confidence interval [CI] = 91%-95%) than for the Pfizer-BioNTech vaccine (88%; 95% CI = 85%-91%) (p = 0.011); VE for both mRNA vaccines was higher than that for the Janssen vaccine (71%; 95% CI = 56%-81%) (all p<0.001). Protection for the Pfizer-BioNTech vaccine declined 4 months after vaccination. Postvaccination anti-spike IgG and anti-RBD IgG levels were significantly lower in persons vaccinated with the Janssen vaccine than the Moderna or Pfizer-BioNTech vaccines. Although these real-world data suggest some variation in levels of protection by vaccine, all FDA-approved or authorized COVID-19 vaccines provide substantial protection against COVID-19 hospitalization.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , Hospitalization/statistics & numerical data , Immunocompromised Host/immunology , Adolescent , Adult , Aged , COVID-19/epidemiology , COVID-19/therapy , COVID-19 Vaccines/administration & dosage , Female , Humans , Male , Middle Aged , United States/epidemiology , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/immunology , Young Adult
12.
J Infect Dis ; 2021 Sep 08.
Article in English | MEDLINE | ID: covidwho-1402385

ABSTRACT

Evaluations of vaccine effectiveness (VE) are important to monitor as COVID-19 vaccines are introduced in the general population. Research staff enrolled symptomatic participants seeking outpatient medical care for COVID-19-like illness or SARS-CoV-2 testing from a multisite network. VE was evaluated using the test-negative design. Among 236 SARS-CoV-2 nucleic acid amplification test-positive and 576 test-negative participants aged ≥16 years, VE of mRNA vaccines against COVID-19 was 91% (95% CI: 83-95) for full vaccination and 75% (95% CI: 55-87) for partial vaccination. Vaccination was associated with prevention of most COVID-19 cases among people seeking outpatient medical care.

13.
MMWR Morb Mortal Wkly Rep ; 70(34): 1156-1162, 2021 Aug 27.
Article in English | MEDLINE | ID: covidwho-1374684

ABSTRACT

Real-world evaluations have demonstrated high effectiveness of vaccines against COVID-19-associated hospitalizations (1-4) measured shortly after vaccination; longer follow-up is needed to assess durability of protection. In an evaluation at 21 hospitals in 18 states, the duration of mRNA vaccine (Pfizer-BioNTech or Moderna) effectiveness (VE) against COVID-19-associated hospitalizations was assessed among adults aged ≥18 years. Among 3,089 hospitalized adults (including 1,194 COVID-19 case-patients and 1,895 non-COVID-19 control-patients), the median age was 59 years, 48.7% were female, and 21.1% had an immunocompromising condition. Overall, 141 (11.8%) case-patients and 988 (52.1%) controls were fully vaccinated (defined as receipt of the second dose of Pfizer-BioNTech or Moderna mRNA COVID-19 vaccines ≥14 days before illness onset), with a median interval of 65 days (range = 14-166 days) after receipt of second dose. VE against COVID-19-associated hospitalization during the full surveillance period was 86% (95% confidence interval [CI] = 82%-88%) overall and 90% (95% CI = 87%-92%) among adults without immunocompromising conditions. VE against COVID-19- associated hospitalization was 86% (95% CI = 82%-90%) 2-12 weeks and 84% (95% CI = 77%-90%) 13-24 weeks from receipt of the second vaccine dose, with no significant change between these periods (p = 0.854). Whole genome sequencing of 454 case-patient specimens found that 242 (53.3%) belonged to the B.1.1.7 (Alpha) lineage and 74 (16.3%) to the B.1.617.2 (Delta) lineage. Effectiveness of mRNA vaccines against COVID-19-associated hospitalization was sustained over a 24-week period, including among groups at higher risk for severe COVID-19; ongoing monitoring is needed as new SARS-CoV-2 variants emerge. To reduce their risk for hospitalization, all eligible persons should be offered COVID-19 vaccination.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , Hospitalization/statistics & numerical data , Vaccination/statistics & numerical data , Adolescent , Adult , Aged , COVID-19/epidemiology , COVID-19/virology , COVID-19 Vaccines/administration & dosage , Female , Humans , Male , Middle Aged , Time Factors , United States/epidemiology , Vaccines, Synthetic , Young Adult
14.
Clin Infect Dis ; 2021 Aug 06.
Article in English | MEDLINE | ID: covidwho-1345719

ABSTRACT

BACKGROUND: As SARS-CoV-2 vaccination coverage increases in the United States (US), there is a need to understand the real-world effectiveness against severe Covid-19 and among people at increased risk for poor outcomes. METHODS: In a multicenter case-control analysis of US adults hospitalized March 11-May 5, 2021, we evaluated vaccine effectiveness to prevent Covid-19 hospitalizations by comparing odds of prior vaccination with an mRNA vaccine (Pfizer-BioNTech or Moderna) between cases hospitalized with Covid-19 and hospital-based controls who tested negative for SARS-CoV-2. RESULTS: Among 1212 participants, including 593 cases and 619 controls, median age was 58 years, 22.8% were Black, 13.9% were Hispanic, and 21.0% had immunosuppression. SARS-CoV-2 lineage B.1.1.7 (Alpha) was the most common variant (67.9% of viruses with lineage determined). Full vaccination (receipt of two vaccine doses ≥14 days before illness onset) had been received by 8.2% of cases and 36.4% of controls. Overall vaccine effectiveness was 87.1% (95% CI: 80.7 to 91.3%). Vaccine effectiveness was similar for Pfizer-BioNTech and Moderna vaccines, and highest in adults aged 18-49 years (97.4%; 95% CI: 79.3 to 99.7%). Among 45 patients with vaccine-breakthrough Covid hospitalizations, 44 (97.8%) were ≥50 years old and 20 (44.4%) had immunosuppression. Vaccine effectiveness was lower among patients with immunosuppression (62.9%; 95% CI: 20.8 to 82.6%) than without immunosuppression (91.3%; 95% CI: 85.6 to 94.8%). CONCLUSION: During March-May 2021, SARS-CoV-2 mRNA vaccines were highly effective for preventing Covid-19 hospitalizations among US adults. SARS-CoV-2 vaccination was beneficial for patients with immunosuppression, but effectiveness was lower in the immunosuppressed population.

15.
J Infect Dis ; 224(1): 49-59, 2021 07 02.
Article in English | MEDLINE | ID: covidwho-1294731

ABSTRACT

BACKGROUND: We investigated frequency of reinfection with seasonal human coronaviruses (HCoVs) and serum antibody response following infection over 8 years in the Household Influenza Vaccine Evaluation (HIVE) cohort. METHODS: Households were followed annually for identification of acute respiratory illness with reverse-transcription polymerase chain reaction-confirmed HCoV infection. Serum collected before and at 2 time points postinfection were tested using a multiplex binding assay to quantify antibody to seasonal, severe acute respiratory syndrome coronavirus (SARS-CoV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike proteins and SARS-CoV-2 spike subdomains and N protein. RESULTS: Of 3418 participants, 40% were followed for ≥3 years. A total of 1004 HCoV infections were documented; 303 (30%) were reinfections of any HCoV type. The number of HCoV infections ranged from 1 to 13 per individual. The mean time to reinfection with the same type was estimated at 983 days for 229E, 578 days for HKU1, 615 days for OC43, and 711 days for NL63. Binding antibody levels to seasonal HCoVs were high, with little increase postinfection, and were maintained over time. Homologous, preinfection antibody levels did not significantly correlate with odds of infection, and there was little cross-response to SARS-CoV-2 proteins. CONCLUSIONS: Reinfection with seasonal HCoVs is frequent. Binding anti-spike protein antibodies do not correlate with protection from seasonal HCoV infection.


Subject(s)
Coronavirus Infections/epidemiology , Coronavirus , Family Characteristics , Influenza Vaccines/immunology , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Severe Acute Respiratory Syndrome/epidemiology , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/epidemiology , COVID-19/virology , Coinfection/epidemiology , Coronavirus/classification , Coronavirus/genetics , Coronavirus/immunology , Coronavirus Infections/diagnosis , Coronavirus Infections/immunology , Coronavirus Infections/virology , Cross Reactions/immunology , Humans , Influenza Vaccines/administration & dosage , Influenza, Human/virology , Kaplan-Meier Estimate , Michigan/epidemiology , Proportional Hazards Models , Public Health Surveillance , Reinfection/epidemiology , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2 , Seasons , Seroepidemiologic Studies , Severe Acute Respiratory Syndrome/diagnosis , Severe Acute Respiratory Syndrome/immunology , Severe Acute Respiratory Syndrome/virology , Viral Load
16.
Clin Infect Dis ; 73(12): 2240-2247, 2021 12 16.
Article in English | MEDLINE | ID: covidwho-1246699

ABSTRACT

BACKGROUND: Novel coronavirus disease 2019 (COVID-19) is frequently compared with influenza. The Hospitalized Adult Influenza Vaccine Effectiveness Network (HAIVEN) conducts studies on the etiology and characteristics of U.S. hospitalized adults with influenza. It began enrolling patients with COVID-19 hospitalizations in March 2020. Patients with influenza were compared with those with COVID-19 in the first months of the U.S. epidemic. METHODS: Adults aged ≥ 18 years admitted to hospitals in 4 sites with acute respiratory illness were tested by real-time reverse transcription polymerase chain reaction for influenza and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus causing COVID-19. Demographic and illness characteristics were collected for influenza illnesses during 3 seasons 2016-2019. Similar data were collected on COVID-19 cases admitted before June 19, 2020. RESULTS: Age groups hospitalized with COVID-19 (n = 914) were similar to those admitted with influenza (n = 1937); 80% of patients with influenza and 75% of patients with COVID-19 were aged ≥50 years. Deaths from COVID-19 that occurred in younger patients were less often related to underlying conditions. White non-Hispanic persons were overrepresented in influenza (64%) compared with COVID-19 hospitalizations (37%). Greater severity and complications occurred with COVID-19 including more ICU admissions (AOR = 15.3 [95% CI: 11.6, 20.3]), ventilator use (AOR = 15.6 [95% CI: 10.7, 22.8]), 7 additional days of hospital stay in those discharged alive, and death during hospitalization (AOR = 19.8 [95% CI: 12.0, 32.7]). CONCLUSIONS: While COVID-19 can cause a respiratory illness like influenza, it is associated with significantly greater severity of illness, longer hospital stays, and higher in-hospital deaths.


Subject(s)
COVID-19 , Influenza, Human , Adult , Demography , Humans , Influenza, Human/epidemiology , SARS-CoV-2 , United States/epidemiology
17.
MMWR Morb Mortal Wkly Rep ; 70(18): 674-679, 2021 May 07.
Article in English | MEDLINE | ID: covidwho-1218744

ABSTRACT

Adults aged ≥65 years are at increased risk for severe outcomes from COVID-19 and were identified as a priority group to receive the first COVID-19 vaccines approved for use under an Emergency Use Authorization (EUA) in the United States (1-3). In an evaluation at 24 hospitals in 14 states,* the effectiveness of partial or full vaccination† with Pfizer-BioNTech or Moderna vaccines against COVID-19-associated hospitalization was assessed among adults aged ≥65 years. Among 417 hospitalized adults aged ≥65 years (including 187 case-patients and 230 controls), the median age was 73 years, 48% were female, 73% were non-Hispanic White, 17% were non-Hispanic Black, 6% were Hispanic, and 4% lived in a long-term care facility. Adjusted vaccine effectiveness (VE) against COVID-19-associated hospitalization among adults aged ≥65 years was estimated to be 94% (95% confidence interval [CI] = 49%-99%) for full vaccination and 64% (95% CI = 28%-82%) for partial vaccination. These findings are consistent with efficacy determined from clinical trials in the subgroup of adults aged ≥65 years (4,5). This multisite U.S. evaluation under real-world conditions suggests that vaccination provided protection against COVID-19-associated hospitalization among adults aged ≥65 years. Vaccination is a critical tool for reducing severe COVID-19 in groups at high risk.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Hospitalization/statistics & numerical data , Aged , COVID-19/epidemiology , Female , Humans , Male , Risk Assessment , Treatment Outcome , United States/epidemiology , Vaccination Coverage/statistics & numerical data , Vaccines, Synthetic
18.
Open Forum Infect Dis ; 8(1): ofaa576, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-944372

ABSTRACT

We compared symptoms and characteristics of 4961 ambulatory patients with and without laboratory-confirmed severe acute respiratory syndrome coronavirus 2 infection. Findings indicate that clinical symptoms alone would be insufficient to distinguish between coronavirus disease 2019 and other respiratory infections (eg, influenza) and/or to evaluate the effects of preventive interventions (eg, vaccinations).

19.
Influenza Other Respir Viruses ; 15(3): 407-412, 2021 05.
Article in English | MEDLINE | ID: covidwho-894770

ABSTRACT

The COVID-19 pandemic caused by the novel coronavirus SARS-CoV-2 continues to have a major impact on healthcare and social systems throughout the world. As the clinical and epidemiological features of COVID-19 have many parallels with influenza, it is important to ensure optimal management of both respiratory diseases as we anticipate their continued co-circulation. In particular, there is a need to ensure that effective surveillance and diagnostic capacities are in place to monitor these and other respiratory viruses, as this will underpin decisions on the appropriate clinical management of the respective diseases. As such, we propose a series of key recommendations for stakeholders, public health authorities, primary care physicians and surveillance bodies that will help mitigate the combined risks of concurrent influenza epidemics and the COVID-19 pandemic. We advocate the judicious use of influenza vaccines and antivirals, particularly among groups at high risk of complications, with healthcare workers also considered a priority for vaccination. It is likely that the increased use of emerging technologies such as telemedicine and contact tracing will permanently change our approach to managing infectious disease. The use of these technologies, alongside existing pharmaceutical strategies, will ensure that we achieve a holistic approach to the global public health measures needed to deal with the combined threat of influenza and COVID-19. Ensuring that this approach is optimal will be key as we move from a reactive pandemic response towards preparing for the long-term management of the remarkable clinical burden associated with these respiratory pathogens.


Subject(s)
COVID-19/epidemiology , Coinfection/epidemiology , Influenza, Human/epidemiology , SARS-CoV-2 , COVID-19/diagnosis , COVID-19/prevention & control , COVID-19/transmission , Humans , Influenza, Human/diagnosis , Influenza, Human/prevention & control , Influenza, Human/transmission
20.
Influenza Other Respir Viruses ; 15(2): 227-234, 2021 03.
Article in English | MEDLINE | ID: covidwho-892268

ABSTRACT

BACKGROUND: Community-based studies of influenza and other respiratory viruses (eg, SARS-CoV-2) require laboratory confirmation of infection. During the current COVID-19 pandemic, social distancing guidelines require alternative data collection in order to protect both research staff and participants. Home-collected respiratory specimens are less resource-intensive, can be collected earlier after symptom onset, and provide a low-contact means of data collection. A prospective, multi-year, community-based cohort study is an ideal setting to examine the utility of home-collected specimens for identification of influenza. METHODS: We describe the feasibility and reliability of home-collected specimens for the detection of influenza. We collected data and specimens between October 2014 and June 2017 from the Household Influenza Vaccine Evaluation (HIVE) Study. Cohort participants were asked to collect a nasal swab at home upon onset of acute respiratory illness. Research staff also collected nose and throat swab specimens in the study clinic within 7 days of onset. We estimated agreement using Cohen's kappa and calculated sensitivity and specificity of home-collected compared to staff-collected specimens. RESULTS: We tested 336 paired staff- and home-collected respiratory specimens for influenza by RT-PCR; 150 staff-collected specimens were positive for influenza A/H3N2, 23 for influenza A/H1N1, 14 for influenza B/Victoria, and 31 for influenza B/Yamagata. We found moderate agreement between collection methods for influenza A/H3N2 (0.70) and B/Yamagata (0.69) and high agreement for influenza A/H1N1 (0.87) and B/Victoria (0.86). Sensitivity ranged from 78% to 86% for all influenza types and subtypes. Specificity was high for influenza A/H1N1 and both influenza B lineages with a range from 96% to 100%, and slightly lower for A/H3N2 infections (88%). CONCLUSIONS: Collection of nasal swab specimens at home is both feasible and reliable for identification of influenza virus infections.


Subject(s)
Influenza, Human/diagnosis , Nasal Cavity/virology , Orthomyxoviridae/isolation & purification , Specimen Handling , Feasibility Studies , Humans , Orthomyxoviridae/classification , Orthomyxoviridae/genetics , Prospective Studies , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL