Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
2.
Nat Commun ; 13(1): 1976, 2022 Apr 08.
Article in English | MEDLINE | ID: covidwho-1783980

ABSTRACT

Global genomic surveillance of SARS-CoV-2 has identified variants associated with increased transmissibility, neutralization resistance and disease severity. Here we report the emergence of the PANGO lineage C.1.2, detected at low prevalence in South Africa and eleven other countries. The initial C.1.2 detection is associated with a high substitution rate, and includes changes within the spike protein that have been associated with increased transmissibility or reduced neutralization sensitivity in SARS-CoV-2 variants of concern or variants of interest. Like Beta and Delta, C.1.2 shows significantly reduced neutralization sensitivity to plasma from vaccinees and individuals infected with the ancestral D614G virus. In contrast, convalescent donors infected with either Beta or Delta show high plasma neutralization against C.1.2. These functional data suggest that vaccine efficacy against C.1.2 will be equivalent to Beta and Delta, and that prior infection with either Beta or Delta will likely offer protection against C.1.2.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , Humans , Neutralization Tests , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
3.
N Engl J Med ; 386(14): 1361-1362, 2022 Apr 07.
Article in English | MEDLINE | ID: covidwho-1778675

Subject(s)
COVID-19 , Humans , SARS-CoV-2
4.
BMC Med ; 20(1): 128, 2022 03 28.
Article in English | MEDLINE | ID: covidwho-1765453

ABSTRACT

BACKGROUND: Binding and neutralising anti-Spike antibodies play a key role in immune defence against SARS-CoV-2 infection. Since it is known that antibodies wane with time and new immune-evasive variants are emerging, we aimed to assess the dynamics of anti-Spike antibodies in an African adult population with prior SARS-CoV-2 infection and to determine the effect of subsequent COVID-19 vaccination. METHODS: Using a prospective cohort design, we recruited adults with prior laboratory-confirmed mild/moderate COVID-19 in Blantyre, Malawi, and followed them up for 270 days (n = 52). A subset of whom subsequently received a single dose of the AstraZeneca COVID-19 vaccine (ChAdOx nCov-19) (n = 12). We measured the serum concentrations of anti-Spike and receptor-binding domain (RBD) IgG antibodies using a Luminex-based assay. Anti-RBD antibody cross-reactivity across SARS-CoV-2 variants of concern (VOC) was measured using a haemagglutination test. A pseudovirus neutralisation assay was used to measure neutralisation titres across VOCs. Ordinary or repeated measures one-way ANOVA was used to compare log10 transformed data, with p value adjusted for multiple comparison using Sídák's or Holm-Sídák's test. RESULTS: We show that neutralising antibodies wane within 6 months post mild/moderate SARS-CoV-2 infection (30-60 days vs. 210-270 days; Log ID50 6.8 vs. 5.3, p = 0.0093). High levels of binding anti-Spike or anti-RBD antibodies in convalescent serum were associated with potent neutralisation activity against the homologous infecting strain (p < 0.0001). A single dose of the AstraZeneca COVID-19 vaccine following mild/moderate SARS-CoV-2 infection induced a 2 to 3-fold increase in anti-Spike and -RBD IgG levels 30 days post-vaccination (both, p < 0.0001). The anti-RBD IgG antibodies from these vaccinated individuals were broadly cross-reactive against multiple VOCs and had neutralisation potency against original D614G, beta, and delta variants. CONCLUSIONS: These findings show that the AstraZeneca COVID-19 vaccine is an effective booster for waning cross-variant antibody immunity after initial priming with SARS-CoV-2 infection. The potency of hybrid immunity and its potential to maximise the benefits of COVID-19 vaccines needs to be taken into consideration when formulating vaccination policies in sub-Saharan Africa, where there is still limited access to vaccine doses.


Subject(s)
COVID-19 , Viral Vaccines , Antibody Formation , COVID-19/prevention & control , COVID-19/therapy , COVID-19 Vaccines , Humans , Immunization, Passive , Prospective Studies , SARS-CoV-2 , Viral Vaccines/pharmacology
6.
Cell Host Microbe ; 30(2): 154-162.e5, 2022 02 09.
Article in English | MEDLINE | ID: covidwho-1708092

ABSTRACT

Characterizing SARS-CoV-2 evolution in specific geographies may help predict properties of the variants that come from these regions. We mapped neutralization of a SARS-CoV-2 strain that evolved over 6 months from ancestral virus in a person with advanced HIV disease in South Africa; this person was infected prior to emergence of the Beta and Delta variants. We longitudinally tracked the evolved virus and tested it against self-plasma and convalescent plasma from ancestral, Beta, and Delta infections. Early virus was similar to ancestral, but it evolved a multitude of mutations found in Omicron and other variants. It showed substantial but incomplete Pfizer BNT162b2 escape, weak neutralization by self-plasma, and despite pre-dating Delta, it also showed extensive escape of Delta infection-elicited neutralization. This example is consistent with the notion that SARS-CoV-2 evolving in individual immune-compromised hosts, including those with advanced HIV disease, may gain immune escape of vaccines and enhanced escape of Delta immunity, and this has implications for vaccine breakthrough and reinfections.


Subject(s)
Antibodies, Neutralizing/blood , HIV Infections/pathology , Immune Evasion/immunology , Immunogenicity, Vaccine/immunology , SARS-CoV-2/immunology , Adult , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/immunology , COVID-19 Vaccines/immunology , Cell Line , Chlorocebus aethiops , Female , HIV-1/immunology , Humans , Immunocompromised Host/immunology , Neutralization Tests , SARS-CoV-2/isolation & purification , South Africa , Vaccination , Vero Cells
7.
Sci Rep ; 12(1): 2552, 2022 02 15.
Article in English | MEDLINE | ID: covidwho-1692551

ABSTRACT

There is a need for effective therapy for COVID-19 pneumonia. Convalescent plasma has antiviral activity and early observational studies suggested benefit in reducing COVID-19 severity. We investigated the safety and efficacy of convalescent plasma in hospitalized patients with COVID-19 in a population with a high HIV prevalence and where few therapeutic options were available. We performed a double-blinded, multicenter, randomized controlled trial in one private and three public sector hospitals in South Africa. Adult participants with COVID-19 pneumonia requiring non-invasive oxygen were randomized 1:1 to receive a single transfusion of 200 mL of either convalescent plasma or 0.9% saline solution. The primary outcome measure was hospital discharge and/or improvement of ≥ 2 points on the World Health Organisation Blueprint Ordinal Scale for Clinical Improvement by day 28 of enrolment. The trial was stopped early for futility by the Data and Safety Monitoring Board. 103 participants, including 21 HIV positive individuals, were randomized at the time of premature trial termination: 52 in the convalescent plasma and 51 in the placebo group. The primary outcome occurred in 31 participants in the convalescent plasma group and and 32 participants in the placebo group (relative risk 1.03 (95% CI 0.77 to 1.38). Two grade 1 transfusion-related adverse events occurred. Participants who improved clinically received convalescent plasma with a higher median anti-SARS-CoV-2 neutralizing antibody titre compared with those who did not (298 versus 205 AU/mL). Our study contributes additional evidence for recommendations against the use of convalescent plasma for COVID-19 pneumonia. Safety and feasibility in this population supports future investigation for other indications.


Subject(s)
COVID-19/therapy , Adult , COVID-19/mortality , COVID-19/pathology , COVID-19/virology , Double-Blind Method , Female , HIV Infections/complications , Hospitals, Public , Humans , Immunization, Passive , Kaplan-Meier Estimate , Male , Middle Aged , Placebo Effect , SARS-CoV-2/isolation & purification , Severity of Illness Index , South Africa , Treatment Outcome
8.
Sci Transl Med ; 14(631): eabj6824, 2022 Feb 09.
Article in English | MEDLINE | ID: covidwho-1685482

ABSTRACT

SARS-CoV-2 variants that escape neutralization and potentially affect vaccine efficacy have emerged. T cell responses play a role in protection from reinfection and severe disease, but the potential for spike mutations to affect T cell immunity is incompletely understood. We assessed neutralizing antibody and T cell responses in 44 South African COVID-19 patients either infected with the Beta variant (dominant from November 2020 to May 2021) or infected before its emergence (first wave, Wuhan strain) to provide an overall measure of immune evasion. We show that robust spike-specific CD4 and CD8 T cell responses were detectable in Beta-infected patients, similar to first-wave patients. Using peptides spanning the Beta-mutated regions, we identified CD4 T cell responses targeting the wild-type peptides in 12 of 22 first-wave patients, all of whom failed to recognize corresponding Beta-mutated peptides. However, responses to mutated regions formed only a small proportion (15.7%) of the overall CD4 response, and few patients (3 of 44) mounted CD8 responses that targeted the mutated regions. Among the spike epitopes tested, we identified three epitopes containing the D215, L18, or D80 residues that were specifically recognized by CD4 T cells, and their mutated versions were associated with a loss of response. This study shows that despite loss of recognition of immunogenic CD4 epitopes, CD4 and CD8 T cell responses to Beta are preserved overall. These observations may explain why several vaccines have retained the ability to protect against severe COVID-19 even with substantial loss of neutralizing antibody activity against Beta.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Epitopes , Humans , Spike Glycoprotein, Coronavirus/genetics
9.
Nature ; 603(7901): 488-492, 2022 03.
Article in English | MEDLINE | ID: covidwho-1661968

ABSTRACT

The SARS-CoV-2 Omicron variant (B.1.1.529) has multiple spike protein mutations1,2 that contribute to viral escape from antibody neutralization3-6 and reduce vaccine protection from infection7,8. The extent to which other components of the adaptive response such as T cells may still target Omicron and contribute to protection from severe outcomes is unknown. Here we assessed the ability of T cells to react to Omicron spike protein in participants who were vaccinated with Ad26.CoV2.S or BNT162b2, or unvaccinated convalescent COVID-19 patients (n = 70). Between 70% and 80% of the CD4+ and CD8+ T cell response to spike was maintained across study groups. Moreover, the magnitude of Omicron cross-reactive T cells was similar for Beta (B.1.351) and Delta (B.1.617.2) variants, despite Omicron harbouring considerably more mutations. In patients who were hospitalized with Omicron infections (n = 19), there were comparable T cell responses to ancestral spike, nucleocapsid and membrane proteins to those in patients hospitalized in previous waves dominated by the ancestral, Beta or Delta variants (n = 49). Thus, despite extensive mutations and reduced susceptibility to neutralizing antibodies of Omicron, the majority of T cell responses induced by vaccination or infection cross-recognize the variant. It remains to be determined whether well-preserved T cell immunity to Omicron contributes to protection from severe COVID-19 and is linked to early clinical observations from South Africa and elsewhere9-12.


Subject(s)
COVID-19/immunology , COVID-19/virology , Cross Reactions/immunology , Immunity, Cellular , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , T-Lymphocytes/immunology , Adult , Aged , COVID-19 Vaccines/immunology , Convalescence , Hospitalization , Humans , Middle Aged , SARS-CoV-2/chemistry , SARS-CoV-2/classification
10.
Cell Rep Med ; 3(2): 100510, 2022 02 15.
Article in English | MEDLINE | ID: covidwho-1636907

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variants of concern (VOCs) exhibit escape from neutralizing antibodies, causing concern about vaccine effectiveness. However, while non-neutralizing cytotoxic functions of antibodies are associated with improved disease outcome and vaccine protection, Fc effector function escape from VOCs is poorly defined. Furthermore, whether VOCs trigger Fc functions with altered specificity, as has been reported for neutralization, is unknown. Here, we demonstrate that the Beta VOC partially evades Fc effector activity in individuals infected with the original (D614G) variant. However, not all functions are equivalently affected, suggesting differential targeting by antibodies mediating distinct Fc functions. Furthermore, Beta and Delta infection trigger responses with significantly improved Fc cross-reactivity against global VOCs compared with D614G-infected or Ad26.COV2.S-vaccinated individuals. This suggests that, as for neutralization, the infecting spike sequence affects Fc effector function. These data have important implications for vaccine strategies that incorporate VOCs, suggesting these may induce broader Fc effector responses.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , Immunoglobulin Fc Fragments/immunology , SARS-CoV-2/immunology , /immunology , Adult , Aged , COVID-19/blood , COVID-19/prevention & control , COVID-19/virology , Cohort Studies , Cross Reactions , Female , HEK293 Cells , Humans , Jurkat Cells , Male , Middle Aged , Neutralization Tests , Protein Binding , Spike Glycoprotein, Coronavirus/immunology , THP-1 Cells , Treatment Outcome , Vaccination/methods
11.
Nature ; 602(7898): 654-656, 2022 02.
Article in English | MEDLINE | ID: covidwho-1616992

ABSTRACT

The emergence of the SARS-CoV-2 variant of concern Omicron (Pango lineage B.1.1.529), first identified in Botswana and South Africa, may compromise vaccine effectiveness and lead to re-infections1. Here we investigated Omicron escape from neutralization by antibodies from South African individuals vaccinated with Pfizer BNT162b2. We used blood samples taken soon after vaccination from individuals who were vaccinated and previously infected with SARS-CoV-2 or vaccinated with no evidence of previous infection. We isolated and sequence-confirmed live Omicron virus from an infected person and observed that Omicron requires the angiotensin-converting enzyme 2 (ACE2) receptor to infect cells. We compared plasma neutralization of Omicron relative to an ancestral SARS-CoV-2 strain and found that neutralization of ancestral virus was much higher in infected and vaccinated individuals compared with the vaccinated-only participants. However, both groups showed a 22-fold reduction in vaccine-elicited neutralization by the Omicron variant. Participants who were vaccinated and had previously been infected exhibited residual neutralization of Omicron similar to the level of neutralization of the ancestral virus observed in the vaccination-only group. These data support the notion that reasonable protection against Omicron may be maintained using vaccination approaches.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Immune Evasion/immunology , Neutralization Tests , SARS-CoV-2/immunology , Angiotensin-Converting Enzyme 2/metabolism , Animals , Cell Line , Chlorocebus aethiops , Humans , Mutation , SARS-CoV-2/classification , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism
12.
Science ; 373(6556)2021 Aug 13.
Article in English | MEDLINE | ID: covidwho-1559379

ABSTRACT

The emergence of highly transmissible SARS-CoV-2 variants of concern (VOCs) that are resistant to therapeutic antibodies highlights the need for continuing discovery of broadly reactive antibodies. We identified four receptor binding domain-targeting antibodies from three early-outbreak convalescent donors with potent neutralizing activity against 23 variants, including the B.1.1.7, B.1.351, P.1, B.1.429, B.1.526, and B.1.617 VOCs. Two antibodies are ultrapotent, with subnanomolar neutralization titers [half-maximal inhibitory concentration (IC50) 0.3 to 11.1 nanograms per milliliter; IC80 1.5 to 34.5 nanograms per milliliter). We define the structural and functional determinants of binding for all four VOC-targeting antibodies and show that combinations of two antibodies decrease the in vitro generation of escape mutants, suggesting their potential in mitigating resistance development.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/immunology , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/metabolism , Antibodies, Viral/chemistry , Antibodies, Viral/metabolism , Antibody Affinity , Antigen-Antibody Reactions , COVID-19/virology , Humans , Immune Evasion , Immunoglobulin Fab Fragments/immunology , Immunoglobulin Fab Fragments/metabolism , Mutation , Neutralization Tests , Protein Domains , Receptors, Coronavirus/antagonists & inhibitors , Receptors, Coronavirus/metabolism , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
13.
BMC Med ; 19(1): 303, 2021 11 19.
Article in English | MEDLINE | ID: covidwho-1526635

ABSTRACT

BACKGROUND: By August 2021, the COVID-19 pandemic has been less severe in sub-Saharan Africa than elsewhere. In Malawi, there have been three subsequent epidemic waves. We therefore aimed to describe the dynamics of SARS-CoV-2 exposure in Malawi. METHODS: We measured the seroprevalence of anti-SARS-CoV-2 antibodies amongst randomly selected blood transfusion donor sera in Malawi from January 2020 to July 2021 using a cross-sectional study design. In a subset, we also assessed in vitro neutralisation against the original variant (D614G WT) and the Beta variant. RESULTS: A total of 5085 samples were selected from the blood donor database, of which 4075 (80.1%) were aged 20-49 years. Of the total, 1401 were seropositive. After adjustment for assay characteristics and applying population weights, seropositivity reached peaks in October 2020 (18.5%) and May 2021 (64.9%) reflecting the first two epidemic waves. Unlike the first wave, both urban and rural areas had high seropositivity in the second wave, Balaka (rural, 66.2%, April 2021), Blantyre (urban, 75.6%, May 2021), Lilongwe (urban, 78.0%, May 2021), and Mzuzu (urban, 74.6%, April 2021). Blantyre and Mzuzu also show indications of the start of a third pandemic wave with seroprevalence picking up again in July 2021 (Blantyre, 81.7%; Mzuzu, 71.0%). More first wave sera showed in vitro neutralisation activity against the original variant (78% [7/9]) than the beta variant (22% [2/9]), while more second wave sera showed neutralisation activity against the beta variant (75% [12/16]) than the original variant (63% [10/16]). CONCLUSION: The findings confirm extensive SARS-CoV-2 exposure in Malawi over two epidemic waves with likely poor cross-protection to reinfection from the first on the second wave. The dynamics of SARS-CoV-2 exposure will therefore need to be taken into account in the formulation of the COVID-19 vaccination policy in Malawi and across the region. Future studies should use an adequate sample size for the assessment of neutralisation activity across a panel of SARS-CoV-2 variants of concern/interest to estimate community immunity.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Blood Donors , COVID-19 Vaccines , Cross-Sectional Studies , Humans , Pandemics , Seroepidemiologic Studies
14.
Cell Host Microbe ; 29(11): 1611-1619.e5, 2021 11 10.
Article in English | MEDLINE | ID: covidwho-1466221

ABSTRACT

The Johnson and Johnson Ad26.COV2.S single-dose vaccine represents an attractive option for coronavirus disease 2019 (COVID-19) vaccination in countries with limited resources. We examined the effect of prior infection with different SARS-CoV-2 variants on Ad26.COV2.S immunogenicity. We compared participants who were SARS-CoV-2 naive with those either infected with the ancestral D614G virus or infected in the second wave when Beta predominated. Prior infection significantly boosts spike-binding antibodies, antibody-dependent cellular cytotoxicity, and neutralizing antibodies against D614G, Beta, and Delta; however, neutralization cross-reactivity varied by wave. Robust CD4 and CD8 T cell responses are induced after vaccination, regardless of prior infection. T cell recognition of variants is largely preserved, apart from some reduction in CD8 recognition of Delta. Thus, Ad26.COV2.S vaccination after infection could result in enhanced protection against COVID-19. The impact of the infecting variant on neutralization breadth after vaccination has implications for the design of second-generation vaccines based on variants of concern.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Vaccination , Adult , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Female , Humans , Male , Middle Aged , T-Lymphocytes/immunology
15.
Viruses ; 13(10)2021 10 12.
Article in English | MEDLINE | ID: covidwho-1463842

ABSTRACT

BACKGROUND: COVID-19 convalescent plasma (CCP) has been considered internationally as a treatment option for COVID-19. CCP refers to plasma collected from donors who have recovered from and made antibodies to SARS-CoV-2. To date, convalescent plasma has not been collected in South Africa. As other investigational therapies and vaccination were not widely accessible, there was an urgent need to implement a CCP manufacture programme to service South Africans. METHODS: The South African National Blood Service and the Western Cape Blood Service implemented a CCP programme that included CCP collection, processing, testing and storage. CCP units were tested for SARS-CoV-2 Spike ELISA and neutralising antibodies and routine blood transfusion parameters. CCP units from previously pregnant females were tested for anti-HLA and anti-HNA antibodies. RESULTS: A total of 987 CCP units were collected from 243 donors, with a median of three donations per donor. Half of the CCP units had neutralising antibody titres of >1:160. One CCP unit was positive on the TPHA serology. All CCP units tested for anti-HLA antibodies were positive. CONCLUSION: Within three months of the first COVID-19 diagnosis in South Africa, a fully operational CCP programme was set up across South Africa. The infrastructure and skills implemented will likely benefit South Africans in this and future pandemics.


Subject(s)
Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/therapeutic use , COVID-19/therapy , SARS-CoV-2/immunology , Adult , Aged , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Blood Component Removal/methods , Blood Donors , Female , Humans , Immunization, Passive/methods , Male , Middle Aged , South Africa , Spike Glycoprotein, Coronavirus/immunology , Young Adult
16.
Lancet HIV ; 8(9): e568-e580, 2021 09.
Article in English | MEDLINE | ID: covidwho-1366764

ABSTRACT

BACKGROUND: People living with HIV are at an increased risk of fatal outcome when admitted to hospital for severe COVID-19 compared with HIV-negative individuals. We aimed to assess safety and immunogenicity of the ChAdOx1 nCoV-19 (AZD1222) vaccine in people with HIV and HIV-negative individuals in South Africa. METHODS: In this ongoing, double-blind, placebo-controlled, phase 1B/2A trial (COV005), people with HIV and HIV-negative participants aged 18-65 years were enrolled at seven South African locations and were randomly allocated (1:1) with full allocation concealment to receive a prime-boost regimen of ChAdOx1 nCoV-19, with two doses given 28 days apart. Eligibility criteria for people with HIV included being on antiretroviral therapy for at least 3 months, with a plasma HIV viral load of less than 1000 copies per mL. In this interim analysis, safety and reactogenicity was assessed in all individuals who received at least one dose of ChAdOx1 nCov 19 between enrolment and Jan 15, 2021. Primary immunogenicity analyses included participants who received two doses of trial intervention and were SARS-CoV-2 seronegative at baseline. This trial is registered with ClinicalTrials.gov, NCT04444674, and the Pan African Clinicals Trials Registry, PACTR202006922165132. FINDINGS: Between June 24 and Nov 12, 2020, 104 people with HIV and 70 HIV-negative individuals were enrolled. 102 people with HIV (52 vaccine; 50 placebo) and 56 HIV-negative participants (28 vaccine; 28 placebo) received the priming dose, 100 people with HIV (51 vaccine; 49 placebo) and 46 HIV-negative participants (24 vaccine; 22 placebo) received two doses (priming and booster). In participants seronegative for SARS-CoV-2 at baseline, there were 164 adverse events in those with HIV (86 vaccine; 78 placebo) and 237 in HIV-negative participants (95 vaccine; 142 placebo). Of seven serious adverse events, one severe fever in a HIV-negative participant was definitely related to trial intervention and one severely elevated alanine aminotranferase in a participant with HIV was unlikely related; five others were deemed unrelated. One person with HIV died (unlikely related). People with HIV and HIV-negative participants showed vaccine-induced serum IgG responses against wild-type Wuhan-1 Asp614Gly (also known as D614G). For participants seronegative for SARS-CoV-2 antigens at baseline, full-length spike geometric mean concentration (GMC) at day 28 was 163·7 binding antibody units (BAU)/mL (95% CI 89·9-298·1) for people with HIV (n=36) and 112·3 BAU/mL (61·7-204·4) for HIV-negative participants (n=23), with a rising day 42 GMC booster response in both groups. Baseline SARS-CoV-2 seropositive people with HIV demonstrated higher antibody responses after each vaccine dose than did people with HIV who were seronegative at baseline. High-level binding antibody cross-reactivity for the full-length spike and receptor-binding domain of the beta variant (B.1.351) was seen regardless of HIV status. In people with HIV who developed high titre responses, predominantly those who were receptor-binding domain seropositive at enrolment, neutralising activity against beta was retained. INTERPRETATION: ChAdOx1 nCoV-19 was well tolerated, showing favourable safety and immunogenicity in people with HIV, including heightened immunogenicity in SARS-CoV-2 baseline-seropositive participants. People with HIV showed cross-reactive binding antibodies to the beta variant and Asp614Gly wild-type, and high responders retained neutralisation against beta. FUNDING: The Bill & Melinda Gates Foundation, South African Medical Research Council, UK Research and Innovation, UK National Institute for Health Research, and the South African Medical Research Council.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , HIV Infections/epidemiology , SARS-CoV-2/immunology , Adult , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/epidemiology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/adverse effects , Cross Reactions , Double-Blind Method , Female , Humans , Immunogenicity, Vaccine , Male , Mutation , SARS-CoV-2/genetics , Safety , Vaccination
17.
Expert Opin Ther Targets ; 25(6): 467-477, 2021 06.
Article in English | MEDLINE | ID: covidwho-1145996

ABSTRACT

INTRODUCTION: Antibodies mediate pathogen neutralization in addition to several cytotoxic Fc functions through engaging cellular receptors and recruiting effector cells. Fc effector functions have been well described in disease control and protection against infectious diseases including HIV, Ebola, malaria, influenza and tuberculosis, making them attractive targets for vaccine design. AREAS COVERED: We briefly summarize the role of Fc effector functions in disease control and protection in viral, bacterial and parasitic infectious diseases. We review Fc effector function in passive immunization and vaccination, and primarily focus on strategies to elicit and modulate these functions as part of a robust vaccine strategy. EXPERT OPINION: Despite their known correlation with vaccine efficacy for several diseases, only recently have seminal studies addressed how these Fc effector functions can be elicited and modulated in vaccination. However, gaps remain in assay standardization and the precise mechanisms of diverse functional assays. Furthermore, there are inherent difficulties in the translation of findings from animal models to humans, given the difference in sequence, expression and function of Fc receptors and Fc portions of antibodies. However, overall it is clear that vaccine development to elicit Fc effector function is an important goal for optimal prevention against infectious disease.


Subject(s)
Antibodies, Neutralizing/immunology , Receptors, Fc/physiology , Viral Vaccines/chemical synthesis , Animals , Humans , Receptors, Fc/immunology , Viral Vaccines/immunology
18.
Science ; 373(6556)2021 Aug 13.
Article in English | MEDLINE | ID: covidwho-1295159

ABSTRACT

The emergence of highly transmissible SARS-CoV-2 variants of concern (VOCs) that are resistant to therapeutic antibodies highlights the need for continuing discovery of broadly reactive antibodies. We identified four receptor binding domain-targeting antibodies from three early-outbreak convalescent donors with potent neutralizing activity against 23 variants, including the B.1.1.7, B.1.351, P.1, B.1.429, B.1.526, and B.1.617 VOCs. Two antibodies are ultrapotent, with subnanomolar neutralization titers [half-maximal inhibitory concentration (IC50) 0.3 to 11.1 nanograms per milliliter; IC80 1.5 to 34.5 nanograms per milliliter). We define the structural and functional determinants of binding for all four VOC-targeting antibodies and show that combinations of two antibodies decrease the in vitro generation of escape mutants, suggesting their potential in mitigating resistance development.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/immunology , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/metabolism , Antibodies, Viral/chemistry , Antibodies, Viral/metabolism , Antibody Affinity , Antigen-Antibody Reactions , COVID-19/virology , Humans , Immune Evasion , Immunoglobulin Fab Fragments/immunology , Immunoglobulin Fab Fragments/metabolism , Mutation , Neutralization Tests , Protein Domains , Receptors, Coronavirus/antagonists & inhibitors , Receptors, Coronavirus/metabolism , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
19.
Biochem Biophys Res Commun ; 566: 135-140, 2021 08 20.
Article in English | MEDLINE | ID: covidwho-1260666

ABSTRACT

The global circulation of newly emerging variants of SARS-CoV-2 is a new threat to public health due to their increased transmissibility and immune evasion. Moreover, currently available vaccines and therapeutic antibodies were shown to be less effective against new variants, in particular, the South African (SA) variant, termed 501Y.V2 or B.1.351. To assess the efficacy of the CT-P59 monoclonal antibody against the SA variant, we sought to perform as in vitro binding and neutralization assays, and in vivo animal studies. CT-P59 neutralized B.1.1.7 variant to a similar extent as to wild type virus. CT-P59 showed reduced binding affinity against a RBD (receptor binding domain) triple mutant containing mutations defining B.1.351 (K417N/E484K/N501Y) also showed reduced potency against the SA variant in live virus and pseudovirus neutralization assay systems. However, in vivo ferret challenge studies demonstrated that a therapeutic dosage of CT-P59 was able to decrease B.1.351 viral load in the upper and lower respiratory tracts, comparable to that observed for the wild type virus. Overall, although CT-P59 showed reduced in vitro neutralizing activity against the SA variant, sufficient antiviral effect in B.1.351-infected animals was confirmed with a clinical dosage of CT-P59, suggesting that CT-P59 has therapeutic potential for COVID-19 patients infected with SA variant.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/therapeutic use , COVID-19/therapy , COVID-19/virology , Immunoglobulin G/therapeutic use , SARS-CoV-2 , Animals , Antibodies, Monoclonal, Humanized/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , Disease Models, Animal , Female , Ferrets , Humans , Immunoglobulin G/immunology , In Vitro Techniques , Neutralization Tests , Pandemics , SARS-CoV-2/genetics , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , South Africa , Viral Load/immunology
SELECTION OF CITATIONS
SEARCH DETAIL