Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
JMIR Public Health Surveill ; 2023 May 24.
Article in English | MEDLINE | ID: covidwho-20234741

ABSTRACT

BACKGROUND: The SARS-CoV-2 pandemic is characterized by a constant risk of a rapid increase in infection burden due to the emergence of new variants with higher transmissibility and immune escape. Monitoring the SARS-CoV-2 pandemic has so far mainly relied on passive surveillance, which yields biased epidemiological measures due to the disproportionate number of undetected asymptomatic cases. In contrast, active surveillance could provide more accurate estimates of the true SARS-CoV-2 prevalence that help to forecast the evolution of the pandemic, enabling evidence-based decision-making. OBJECTIVE: The objective of this study was to compare four different approaches of active SARS-CoV-2 surveillance, focusing on feasibility and epidemiological outcomes. METHODS: The randomized, two-factor factorial, multi-arm parallel trial was conducted in 2020 in a German district with 700,000 inhabitants. The epidemiological outcome comprised the SARS-CoV-2 prevalence and its precision. The four study arms combined two factors: i) individuals versus households, ii) direct testing versus testing conditioned on symptom pre-screening. Individuals seven years and older were eligible. Altogether, 27,908 addresses from general population representative samples of 51 municipalities were randomly allocated to the arms and 15 consecutive recruitment weekdays. Data collection and logistics were highly digitized, a website in five languages enabled low-barrier registration and tracking of results. Gargle sample collection kits were sent by post. Participants collected a gargle sample at home and mailed it to the laboratory. Samples were analyzed with RT-LAMP, positive/weak results were confirmed with RT-qPCR. RESULTS: Recruitment took place between 18 November and 11 December 2020. The response rates in the four arms varied between 34% and 41%. The pre-screening classified 17% as COVID-19 symptomatic. Altogether, 4,232 persons without pre-screening and 7,623 participating in the pre-screening provided 5,351 gargle samples, of which 5,319 (99%) could be analyzed, yielding 17 confirmed SARS-CoV-2 infections and a combined prevalence of 0.36% (95% CI [0.14%; 0.59%]) in the arms without, respectively 0.05% (95% CI [0.00%; 0.108%]) with pre-screening (initial contacts only). In more detail, we found a prevalence of 0.31% (95% CI [0.06; 0.58]), respectively 0.35% (95% CI [0.09; 0.6], household members included), and lower estimates with pre-screening (0.07% (95% CI [0.0; 0.15], respectively with household members 0.02 (95% CI [0.0; 0.06]). Asymptomatic infections occurred in 3/11 positive cases with symptom data. The two arms without pre-screening performed best regarding effectiveness and accuracy. CONCLUSIONS: This study has shown that the combination of postal mailing of gargle sample kits as well as returning home-based self-collected liquid gargle samples and a subsequent analysis with high-sensitivity RT-LAMP is generally a feasible way to conduct active SARS-CoV-2 population surveillance without burdening routine diagnostic testing. Efforts to improve participation rates and to facilitate integration into the public health system may increase the potential to effectively monitor the course of the pandemic. CLINICALTRIAL: The trial was registered (30 November 2020) at the German Clinical Trials Register, registration number DRKS00023271. INTERNATIONAL REGISTERED REPORT: RR2-10.1186/s13063-021-05619-5.

2.
Int J Epidemiol ; 2022 Sep 26.
Article in English | MEDLINE | ID: covidwho-2234461

ABSTRACT

BACKGROUND: There has been a large influx of COVID-19 seroprevalence studies, but comparability between the seroprevalence estimates has been an issue because of heterogeneities in testing platforms and study methodology. One potential source of heterogeneity is the response or participation rate. METHODS: We conducted a review of participation rates (PR) in SARS-CoV-2 seroprevalence studies collected by SeroTracker and examined their effect on the validity of study conclusions. PR was calculated as the count of participants for whom the investigators had collected a valid sample, divided by the number of people invited to participate in the study. A multivariable beta generalized linear model with logit link was fitted to determine if the PR of international household and community-based seroprevalence studies was associated with the factors of interest, from 1 December 2019 to 10 March 2021. RESULTS: We identified 90 papers based on screening and were able to calculate the PR for 35 out of 90 papers (39%), with a median PR of 70% and an interquartile range of 40.92; 61% of the studies did not report PR. CONCLUSIONS: Many SARS-CoV-2 seroprevalence studies do not report PR. It is unclear what the median PR rate would be had a larger portion not had limitations in reporting. Low participation rates indicate limited representativeness of results. Non-probabilistic sampling frames were associated with higher participation rates but may be less representative. Standardized definitions of participation rate and data reporting necessary for the PR calculations are essential for understanding the representativeness of seroprevalence estimates in the population of interest.

3.
Viruses ; 12(8)2020 08 07.
Article in English | MEDLINE | ID: covidwho-713633

ABSTRACT

Rapid large-scale testing is essential for controlling the ongoing pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The standard diagnostic pipeline for testing SARS-CoV-2 presence in patients with an ongoing infection is predominantly based on pharyngeal swabs, from which the viral RNA is extracted using commercial kits, followed by reverse transcription and quantitative PCR detection. As a result of the large demand for testing, commercial RNA extraction kits may be limited and, alternatively, non-commercial protocols are needed. Here, we provide a magnetic bead RNA extraction protocol that is predominantly based on in-house made reagents and is performed in 96-well plates supporting large-scale testing. Magnetic bead RNA extraction was benchmarked against the commercial QIAcube extraction platform. Comparable viral RNA detection sensitivity and specificity were obtained by fluorescent and colorimetric reverse transcription loop-mediated isothermal amplification (RT-LAMP) using a primer set targeting the N gene, as well as RT-qPCR using a primer set targeting the E gene, showing that the RNA extraction protocol presented here can be combined with a variety of detection methods at high throughput. Importantly, the presented diagnostic workflow can be quickly set up in a laboratory without access to an automated pipetting robot.


Subject(s)
Betacoronavirus/chemistry , Betacoronavirus/genetics , Clinical Laboratory Techniques/methods , Coronavirus Infections/virology , Pneumonia, Viral/virology , RNA, Viral/isolation & purification , Betacoronavirus/isolation & purification , COVID-19 , COVID-19 Testing , Coronavirus Infections/diagnosis , Humans , Magnetic Phenomena , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/methods , Pandemics , Pneumonia, Viral/diagnosis , RNA, Viral/genetics , Real-Time Polymerase Chain Reaction/methods , Reverse Transcription , SARS-CoV-2 , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL