Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Environ Int ; 161: 107136, 2022 03.
Article in English | MEDLINE | ID: covidwho-1864560

ABSTRACT

BACKGROUND: The World Health Organization (WHO) and the International Labour Organization (ILO) have produced the WHO/ILO Joint Estimates of the Work-related Burden of Disease and Injury (WHO/ILO Joint Estimates). For these, systematic reviews of studies estimating the prevalence of exposure to selected occupational risk factors have been conducted to provide input data for estimations of the number of exposed workers. A critical part of systematic review methodology is to assess the quality of evidence across studies. In this article, we present the approach applied in these WHO/ILO systematic reviews for performing such assessments on studies of prevalence of exposure. It is called the Quality of Evidence in Studies estimating Prevalence of Exposure to Occupational risk factors (QoE-SPEO) approach. We describe QoE-SPEO's development to date, demonstrate its feasibility reporting results from pilot testing and case studies, note its strengths and limitations, and suggest how QoE-SPEO should be tested and developed further. METHODS: Following a comprehensive literature review, and using expert opinion, selected existing quality of evidence assessment approaches used in environmental and occupational health were reviewed and analysed for their relevance to prevalence studies. Relevant steps and components from the existing approaches were adopted or adapted for QoE-SPEO. New steps and components were developed. We elicited feedback from other systematic review methodologists and exposure scientists and reached consensus on the QoE-SPEO approach. Ten individual experts pilot-tested QoE-SPEO. To assess inter-rater agreement, we counted ratings of expected (actual and non-spurious) heterogeneity and quality of evidence and calculated a raw measure of agreement (Pi) between individual raters and rater teams for the downgrade domains. Pi ranged between 0.00 (no two pilot testers selected the same rating) and 1.00 (all pilot testers selected the same rating). Case studies were conducted of experiences of QoE-SPEO's use in two WHO/ILO systematic reviews. RESULTS: We found no existing quality of evidence assessment approach for occupational exposure prevalence studies. We identified three relevant, existing approaches for environmental and occupational health studies of the effect of exposures. Assessments using QoE-SPEO comprise three steps: (1) judge the level of expected heterogeneity (defined as non-spurious variability that can be expected in exposure prevalence, within or between individual persons, because exposure may change over space and/or time), (2) assess downgrade domains, and (3) reach a final rating on the quality of evidence. Assessments are conducted using the same five downgrade domains as the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach: (a) risk of bias, (b) indirectness, (c) inconsistency, (d) imprecision, and (e) publication bias. For downgrade domains (c) and (d), the assessment varies depending on the level of expected heterogeneity. There are no upgrade domains. The QoE-SPEO's ratings are "very low", "low", "moderate", and "high". To arrive at a final decision on the overall quality of evidence, the assessor starts at "high" quality of evidence and for each domain downgrades by one or two levels for serious concerns or very serious concerns, respectively. In pilot tests, there was reasonable agreement in ratings for expected heterogeneity; 70% of raters selected the same rating. Inter-rater agreement ranged considerably between downgrade domains, both for individual rater pairs (range Pi: 0.36-1.00) and rater teams (0.20-1.00). Sparse data prevented rigorous assessment of inter-rater agreement in quality of evidence ratings. CONCLUSIONS: We present QoE-SPEO as an approach for assessing quality of evidence in prevalence studies of exposure to occupational risk factors. It has been developed to its current version (as presented here), has undergone pilot testing, and was applied in the systematic reviews for the WHO/ILO Joint Estimates. While the approach requires further testing and development, it makes steps towards filling an identified gap, and progress made so far can be used to inform future work in this area.


Subject(s)
Occupational Diseases , Occupational Exposure , Cost of Illness , Humans , Occupational Diseases/epidemiology , Occupational Diseases/etiology , Prevalence , Review Literature as Topic , World Health Organization
2.
BMJ Open ; 11(9), 2021.
Article in English | ProQuest Central | ID: covidwho-1842922

ABSTRACT

IntroductionThe COVID-19 pandemic has driven unprecedented social and economic reform in efforts to curb the impact of disease. Governments worldwide have legislated non-essential service shutdowns and adapted essential service provision in order to minimise face-to-face contact. We anticipate major consequences resulting from such policies, with marginalised populations expected to bear the greatest burden of such measures, especially those with substance use disorders (SUDs).Methods and analysisWe aim to conduct (1) a scoping review to summarise the available evidence evaluating the impact of the COVID-19 pandemic on patients with SUDs, and (2) an evidence map to visually plot and categorise the current available evidence evaluating the impact of COVID-19 on patients with SUDs to identify gaps in addressing high-risk populations.Ethics and disseminationEthics approval is not required for this scoping review as we plan to review publicly available data. This is part of a multistep project, whereby we intend to use the findings generated from this review in combination with data from an ongoing prospective cohort study our team is leading, encompassing over 2000 patients with SUDs receiving medication-assisted therapy in Ontario prior to and during the COVID-19 pandemic.

3.
Clin Infect Dis ; 2021 Oct 20.
Article in English | MEDLINE | ID: covidwho-1831048

ABSTRACT

Despite the challenges of the pandemic, there has been substantial progress with COVID-19 therapies. Pivotal COVID-19 trials like SOLIDARITY, RECOVERY and ACCT-1 were rapidly conducted and data disseminated to support effective therapies.. However, critical shortcomings remain on trial conduct, dissemination and interpretation of study results, and regulatory guidance in pandemic settings. The lessons we learned have implications for both the current pandemic and future emerging infectious diseases. There is a need for establishing and standardizing clinical meaningful outcomes in therapeutic trials and for targeting defined populations and phenotypes that will most benefit from specific therapies. Standardized processes should be established for rapid and critical data review and dissemination to ensure scientific integrity. Clarity around the evidence standards needed for issuance of both Emergency Use Authorization (EUA) and Biologic License Application (BLA) should be established and an infrastructure for executing rapid trials in epidemic settings maintained.

4.
MMWR Morb Mortal Wkly Rep ; 71(11): 416-421, 2022 Mar 18.
Article in English | MEDLINE | ID: covidwho-1744554

ABSTRACT

The mRNA-1273 (Moderna) COVID-19 vaccine is a lipid nanoparticle-encapsulated, nucleoside-modified mRNA vaccine encoding the stabilized prefusion spike glycoprotein of SARS-CoV-2, the virus that causes COVID-19. During December 2020, the vaccine was granted Emergency Use Authorization (EUA) by the Food and Drug Administration (FDA), and the Advisory Committee on Immunization Practices (ACIP) issued an interim recommendation for use among persons aged ≥18 years (1), which was adopted by CDC. During December 19, 2020-January 30, 2022, approximately 204 million doses of Moderna COVID-19 vaccine were administered in the United States (2) as a primary series of 2 intramuscular doses (100 µg [0.5 mL] each) 4 weeks apart. On January 31, 2022, FDA approved a Biologics License Application (BLA) for use of the Moderna COVID-19 vaccine (Spikevax, ModernaTX, Inc.) in persons aged ≥18 years (3). On February 4, 2022, the ACIP COVID-19 Vaccines Work Group conclusions regarding recommendations for the use of the Moderna COVID-19 vaccine were presented to ACIP at a public meeting. The Work Group's deliberations were based on the Evidence to Recommendation (EtR) Framework,* which incorporates the Grading of Recommendations, Assessment, Development and Evaluation (GRADE) approach† to rank evidence quality. In addition to initial clinical trial data, ACIP considered new information gathered in the 12 months since issuance of the interim recommendations, including additional follow-up time in the clinical trial, real-world vaccine effectiveness studies, and postauthorization vaccine safety monitoring. ACIP also considered comparisons of mRNA vaccine effectiveness and safety in real-world settings when first doses were administered 8 weeks apart instead of the original intervals used in clinical trials (3 weeks for BNT162b2 [Pfizer-BioNTech] COVID-19 vaccine and 4 weeks for Moderna COVID-19 vaccine). Based on this evidence, CDC has provided guidance that an 8-week interval might be optimal for some adolescents and adults. The additional information gathered since the issuance of the interim recommendations increased certainty that the benefits of preventing symptomatic and asymptomatic SARS-CoV-2 infection, hospitalization, and death outweigh vaccine-associated risks of the Moderna COVID-19 vaccine. On February 4, 2022, ACIP modified its interim recommendation to a standard recommendation§ for use of the fully licensed Moderna COVID-19 vaccine in persons aged ≥18 years.


Subject(s)
/administration & dosage , Advisory Committees , Centers for Disease Control and Prevention, U.S. , Health Planning Guidelines , Immunization Schedule , Adult , Humans , Middle Aged , United States
5.
Clin Infect Dis ; 2021 Jun 23.
Article in English | MEDLINE | ID: covidwho-1705947

ABSTRACT

BACKGROUND: Immunoassays designed to detect SARS-CoV-2 protein antigens are now commercially available. The most widely used tests are rapid lateral flow assays that generate results in approximately 15 minutes for diagnosis at the point-of-care. Higher throughput, laboratory-based SARS-CoV-2 antigen (Ag) assays have also been developed. The overall accuracy of SARS-CoV-2 Ag tests, however, is not well defined. The Infectious Diseases Society of America (IDSA) convened an expert panel to perform a systematic review of the literature and develop best practice guidance related to SARS-CoV-2 Ag testing. This guideline is the third in a series of rapid, frequently updated COVID-19 diagnostic guidelines developed by IDSA. OBJECTIVE: IDSA's goal was to develop evidence-based recommendations or suggestions that assist clinicians, clinical laboratories, patients, public health authorities, administrators and policymakers in decisions related to the optimal use of SARS-CoV-2 Ag tests in both medical and non-medical settings. METHODS: A multidisciplinary panel of infectious diseases clinicians, clinical microbiologists and experts in systematic literature review identified and prioritized clinical questions related to the use of SARS-CoV-2 Ag tests. Grading of Recommendations Assessment, Development and Evaluation (GRADE) methodology was used to assess the certainty of evidence and make testing recommendations. RESULTS: The panel agreed on five diagnostic recommendations. These recommendations address antigen testing in symptomatic and asymptomatic individuals as well as assess single versus repeat testing strategies. CONCLUSIONS: Data on the clinical performance of U.S. Food and Drug Administration SARS-CoV-2 Ag tests with Emergency Use Authorization is mostly limited to single, one-time testing versus standard nucleic acid amplification testing (NAAT) as the reference standard. Rapid Ag tests have high specificity and low to modest sensitivity compared to reference NAAT methods. Antigen test sensitivity is heavily dependent on viral load, with differences observed between symptomatic compared to asymptomatic individuals and the time of testing post onset of symptoms. Based on these observations, rapid RT-PCR or laboratory-based NAAT remain the diagnostic methods of choice for diagnosing SARS-CoV-2 infection. However, when molecular testing is not readily available or is logistically infeasible, Ag testing can help identify some individuals with SARS-CoV-2 infection. The overall quality of available evidence supporting use of Ag testing was graded as very low to moderate.

6.
Clin Infect Dis ; 2021 Nov 15.
Article in English | MEDLINE | ID: covidwho-1522160

ABSTRACT

BACKGROUND: Since its emergence in late 2019, SARS-CoV-2 continues to pose a risk to healthcare personnel (HCP) and patients in healthcare settings. Although all clinical interactions likely carry some risk of transmission, human actions like coughing and care activities like aerosol-generating procedures likely have a higher risk of transmission. The rapid emergence and global spread of SARS-CoV-2 continues to create significant challenges in healthcare facilities, particularly with shortages of personal protective equipment (PPE) used by HCP. Evidence-based recommendations for what PPE to use in conventional, contingency, and crisis standards of care continue to be needed. Where evidence is lacking, the development of specific research questions can help direct funders and investigators. OBJECTIVE: Develop evidence-based rapid guidelines intended to support HCP in their decisions about infection prevention when caring for patients with suspected or known COVID-19. METHODS: IDSA formed a multidisciplinary guideline panel including frontline clinicians, infectious disease specialists, experts in infection control, and guideline methodologists with representation from the disciplines of public health, medical microbiology, pediatrics, critical care medicine and gastroenterology. The process followed a rapid recommendation checklist. The panel prioritized questions and outcomes. Then a systematic review of the peer-reviewed and grey literature was conducted. The Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach was used to assess the certainty of evidence and make recommendations. RESULTS: The IDSA guideline panel agreed on eight recommendations, including two updated recommendations and one new recommendation added since the first version of the guideline. Narrative summaries of other interventions undergoing evaluations are also included. CONCLUSIONS: Using a combination of direct and indirect evidence, the panel was able to provide recommendations for eight specific questions on the use of PPE for HCP providing care for patients with suspected or known COVID-19. Where evidence was lacking, attempts were made to provide potential avenues for investigation. There remain significant gaps in the understanding of the transmission dynamics of SARS-CoV-2 and PPE recommendations may need to be modified in response to new evidence. These recommendations should serve as a minimum for PPE use in healthcare facilities and do not preclude decisions based on local risk assessments or requirements of local health jurisdictions or other regulatory bodies.

7.
MMWR Morb Mortal Wkly Rep ; 70(45): 1579-1583, 2021 Nov 12.
Article in English | MEDLINE | ID: covidwho-1513271

ABSTRACT

The Pfizer-BioNTech COVID-19 (BNT162b2) vaccine is a lipid nanoparticle-formulated, nucleoside-modified mRNA vaccine encoding the prefusion spike glycoprotein of SARS-CoV-2, the virus that causes COVID-19. On August 23, 2021, the Food and Drug Administration (FDA) approved a Biologics License Application (BLA) for use of the Pfizer-BioNTech COVID-19 vaccine, marketed as Comirnaty (Pfizer, Inc.), in persons aged ≥16 years (1). The Pfizer-BioNTech COVID-19 vaccine is also recommended for adolescents aged 12-15 years under an Emergency Use Authorization (EUA) (1). All persons aged ≥12 years are recommended to receive 2 doses (30 µg, 0.3 mL each), administered 3 weeks apart (2,3). As of November 2, 2021, approximately 248 million doses of the Pfizer-BioNTech COVID-19 vaccine had been administered to persons aged ≥12 years in the United States.* On October 29, 2021, FDA issued an EUA amendment for a new formulation of Pfizer-BioNTech COVID-19 vaccine for use in children aged 5-11 years, administered as 2 doses (10 µg, 0.2 mL each), 3 weeks apart (Table) (1). On November 2, 2021, the Advisory Committee on Immunization Practices (ACIP) issued an interim recommendation† for use of the Pfizer-BioNTech COVID-19 vaccine in children aged 5-11 years for the prevention of COVID-19. To guide its deliberations regarding recommendations for the vaccine, ACIP used the Evidence to Recommendation (EtR) Framework§ and incorporated a Grading of Recommendations, Assessment, Development and Evaluation (GRADE) approach.¶ The ACIP recommendation for the use of the Pfizer-BioNTech COVID-19 vaccine in children aged 5-11 years under an EUA is interim and will be updated as additional information becomes available. The Pfizer-BioNTech COVID-19 vaccine has high efficacy (>90%) against COVID-19 in children aged 5-11 years, and ACIP determined benefits outweigh risks for vaccination. Vaccination is important to protect children against COVID-19 and reduce community transmission of SARS-CoV-2.


Subject(s)
COVID-19 Vaccines/administration & dosage , Practice Guidelines as Topic , Advisory Committees , COVID-19/epidemiology , COVID-19/prevention & control , Centers for Disease Control and Prevention, U.S. , Child , Drug Approval , Humans , Immunization/standards , Immunization Schedule , United States/epidemiology , United States Food and Drug Administration
8.
MMWR Morb Mortal Wkly Rep ; 70(44): 1545-1552, 2021 Nov 05.
Article in English | MEDLINE | ID: covidwho-1502902

ABSTRACT

Three COVID-19 vaccines are currently approved under a Biologics License Application (BLA) or authorized under an Emergency Use Authorization (EUA) by the Food and Drug Administration (FDA) and recommended for primary vaccination by the Advisory Committee on Immunization Practices (ACIP) in the United States: the 2-dose mRNA-based Pfizer-BioNTech/Comirnaty and Moderna COVID-19 vaccines and the single-dose adenovirus vector-based Janssen (Johnson & Johnson) COVID-19 vaccine (1,2) (Box 1). In August 2021, FDA amended the EUAs for the two mRNA COVID-19 vaccines to allow for an additional primary dose in certain immunocompromised recipients of an initial mRNA COVID-19 vaccination series (1). During September-October 2021, FDA amended the EUAs to allow for a COVID-19 vaccine booster dose following a primary mRNA COVID-19 vaccination series in certain recipients aged ≥18 years who are at increased risk for serious complications of COVID-19 or exposure to SARS-CoV-2 (the virus that causes COVID-19), as well as in recipients aged ≥18 years of Janssen COVID-19 vaccine (1) (Table). For the purposes of these recommendations, an additional primary (hereafter additional) dose refers to a dose of vaccine administered to persons who likely did not mount a protective immune response after initial vaccination. A booster dose refers to a dose of vaccine administered to enhance or restore protection by the primary vaccination, which might have waned over time. Health care professionals play a critical role in COVID-19 vaccination efforts, including for primary, additional, and booster vaccination, particularly to protect patients who are at increased risk for severe illness and death.


Subject(s)
Advisory Committees , COVID-19 Vaccines/administration & dosage , Immunization/standards , Practice Guidelines as Topic , Adolescent , Adult , Adverse Drug Reaction Reporting Systems , Aged , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Centers for Disease Control and Prevention, U.S. , Drug Approval , Humans , Middle Aged , United States/epidemiology , United States Food and Drug Administration , Young Adult
9.
Clin Infect Dis ; 2021 Oct 20.
Article in English | MEDLINE | ID: covidwho-1475781

ABSTRACT

Given the urgent need for treatments during the COVID-19 pandemic, the US Food and Drug Administration (FDA) issued emergency use authorizations (EUAs) for multiple therapies. In several instances, however, these EUAs were issued before sufficient evidence of a given therapy's efficacy and safety were available, potentially promoting ineffective or even harmful therapies and undermining the generation of definitive evidence. We describe the strengths and weaknesses of the different therapeutic EUAs issued during this pandemic. We also contrast them to the vaccine EUAs and suggest a framework and criteria for an evidence-based, trustworthy, and publicly transparent therapeutic EUA process for future pandemics.

10.
MMWR Morb Mortal Wkly Rep ; 70(38): 1344-1348, 2021 Sep 24.
Article in English | MEDLINE | ID: covidwho-1468851

ABSTRACT

The Pfizer-BioNTech COVID-19 vaccine (BNT162b2) is a lipid nanoparticle-formulated, nucleoside mRNA vaccine encoding the prefusion spike glycoprotein of SARS-CoV-2, the virus that causes COVID-19. Vaccination with the Pfizer-BioNTech COVID-19 vaccine consists of 2 intramuscular doses (30 µg, 0.3 mL each) administered 3 weeks apart. In December 2020, the vaccine was granted Emergency Use Authorization (EUA) by the Food and Drug Administration (FDA) as well as an interim recommendation for use among persons aged ≥16 years by the Advisory Committee on Immunization Practices (ACIP) (1). In May 2021, the EUA and interim ACIP recommendations for Pfizer-BioNTech COVID-19 vaccine were extended to adolescents aged 12-15 years (2). During December 14, 2020-September 1, 2021, approximately 211 million doses of Pfizer-BioNTech COVID-19 vaccine were administered in the United States.* On August 23, 2021, FDA approved a Biologics License Application for use of the Pfizer-BioNTech COVID-19 vaccine, Comirnaty (Pfizer, Inc.), in persons aged ≥16 years (3). The ACIP COVID-19 Vaccines Work Group's conclusions regarding the evidence for the Pfizer-BioNTech COVID-19 vaccine were presented to ACIP at a public meeting on August 30, 2021. To guide its deliberations regarding the Pfizer-BioNTech COVID-19 vaccine, ACIP used the Evidence to Recommendation (EtR) Framework,† and incorporated a Grading of Recommendations, Assessment, Development and Evaluation (GRADE) approach.§ In addition to initial clinical trial data, ACIP considered new information gathered in the 8 months since issuance of the interim recommendation for Pfizer-BioNTech COVID-19 vaccine, including additional follow-up time in the clinical trial, real-world vaccine effectiveness studies, and postauthorization vaccine safety monitoring. The additional information increased certainty that benefits from prevention of asymptomatic infection, COVID-19, and associated hospitalization and death outweighs vaccine-associated risks. On August 30, 2021, ACIP issued a recommendation¶ for use of the Pfizer-BioNTech COVID-19 vaccine in persons aged ≥16 years for the prevention of COVID-19.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Immunization/standards , Practice Guidelines as Topic , Adolescent , Adult , Advisory Committees , COVID-19/epidemiology , COVID-19 Vaccines/adverse effects , Centers for Disease Control and Prevention, U.S. , Drug Approval , Female , Humans , Male , United States/epidemiology , Vaccines, Synthetic/administration & dosage , Young Adult
11.
Clin Infect Dis ; 2021 Jun 23.
Article in English | MEDLINE | ID: covidwho-1280097

ABSTRACT

BACKGROUND: Immunoassays designed to detect SARS-CoV-2 protein antigens are now commercially available. The most widely used tests are rapid lateral flow assays that generate results in approximately 15 minutes for diagnosis at the point-of-care. Higher throughput, laboratory-based SARS-CoV-2 antigen (Ag) assays have also been developed. The overall accuracy of SARS-CoV-2 Ag tests, however, is not well defined. The Infectious Diseases Society of America (IDSA) convened an expert panel to perform a systematic review of the literature and develop best practice guidance related to SARS-CoV-2 Ag testing. This guideline is the third in a series of rapid, frequently updated COVID-19 diagnostic guidelines developed by IDSA. OBJECTIVE: IDSA's goal was to develop evidence-based recommendations or suggestions that assist clinicians, clinical laboratories, patients, public health authorities, administrators and policymakers in decisions related to the optimal use of SARS-CoV-2 Ag tests in both medical and non-medical settings. METHODS: A multidisciplinary panel of infectious diseases clinicians, clinical microbiologists and experts in systematic literature review identified and prioritized clinical questions related to the use of SARS-CoV-2 Ag tests. Grading of Recommendations Assessment, Development and Evaluation (GRADE) methodology was used to assess the certainty of evidence and make testing recommendations. RESULTS: The panel agreed on five diagnostic recommendations. These recommendations address antigen testing in symptomatic and asymptomatic individuals as well as assess single versus repeat testing strategies. CONCLUSIONS: Data on the clinical performance of U.S. Food and Drug Administration SARS-CoV-2 Ag tests with Emergency Use Authorization is mostly limited to single, one-time testing versus standard nucleic acid amplification testing (NAAT) as the reference standard. Rapid Ag tests have high specificity and low to modest sensitivity compared to reference NAAT methods. Antigen test sensitivity is heavily dependent on viral load, with differences observed between symptomatic compared to asymptomatic individuals and the time of testing post onset of symptoms. Based on these observations, rapid RT-PCR or laboratory-based NAAT remain the diagnostic methods of choice for diagnosing SARS-CoV-2 infection. However, when molecular testing is not readily available or is logistically infeasible, Ag testing can help identify some individuals with SARS-CoV-2 infection. The overall quality of available evidence supporting use of Ag testing was graded as very low to moderate.

12.
MMWR Morb Mortal Wkly Rep ; 70(20): 749-752, 2021 May 21.
Article in English | MEDLINE | ID: covidwho-1237004

ABSTRACT

The Pfizer-BioNTech COVID-19 (BNT162b2) vaccine is a lipid nanoparticle-formulated, nucleoside-modified mRNA vaccine encoding the prefusion spike glycoprotein of SARS-CoV-2, the virus that causes COVID-19. Vaccination with the Pfizer-BioNTech COVID-19 vaccine consists of 2 intramuscular doses (30 µg, 0.3 mL each) administered 3 weeks apart. On December 11, 2020, the Food and Drug Administration (FDA) issued an Emergency Use Authorization (EUA) for use of the Pfizer-BioNTech COVID-19 vaccine (Pfizer, Inc; Philadelphia, Pennsylvania) in persons aged ≥16 years (1); on December 12, 2020, the Advisory Committee on Immunization Practices (ACIP) issued an interim recommendation for use of the vaccine in the same age group (2). As of May 12, 2021, approximately 141.6 million doses of the Pfizer-BioNTech COVID-19 vaccine had been administered to persons aged ≥16 years.* On May 10, 2021, FDA expanded the EUA for the Pfizer-BioNTech COVID-19 vaccine to include adolescents aged 12-15 years (1). On May 12, 2021, ACIP issued an interim recommendation† for use of the Pfizer-BioNTech COVID-19 vaccine in adolescents aged 12-15 years for the prevention of COVID-19. To guide its deliberations regarding the vaccine, ACIP used the Evidence to Recommendation (EtR) Framework,§ using the Grading of Recommendations, Assessment, Development and Evaluation (GRADE) approach.¶ The ACIP recommendation for the use of the Pfizer-BioNTech COVID-19 vaccine in persons aged ≥12 years under an EUA is interim and will be updated as additional information becomes available.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Immunization/standards , Practice Guidelines as Topic , Adolescent , Advisory Committees , COVID-19/epidemiology , Child , Drug Approval , Humans , United States/epidemiology
14.
Clin Infect Dis ; 2021 Jan 22.
Article in English | MEDLINE | ID: covidwho-1042276

ABSTRACT

BACKGROUND: Accurate molecular diagnostic tests are necessary for confirming a diagnosis of coronavirus disease 2019 (COVID-19). Direct detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleic acids in respiratory tract specimens informs patient, healthcare institution and public health level decision-making. The numbers of available SARS-CoV-2 nucleic acid detection tests are rapidly increasing, as is the COVID-19 diagnostic literature. Thus, the Infectious Diseases Society of America (IDSA) recognized a significant need for frequently updated systematic reviews of the literature to inform evidence-based best practice guidance. OBJECTIVE: The IDSA's goal was to develop an evidence-based diagnostic guideline to assist clinicians, clinical laboratorians, patients and policymakers in decisions related to the optimal use of SARS-CoV-2 nucleic acid amplification tests. In addition, we provide a conceptual framework for understanding molecular diagnostic test performance, discuss the nuance of test result interpretation in a variety of practice settings and highlight important unmet research needs in the COVID-19 diagnostic testing space. METHODS: IDSA convened a multidisciplinary panel of infectious diseases clinicians, clinical microbiologists, and experts in systematic literature review to identify and prioritize clinical questions and outcomes related to the use of SARS-CoV-2 molecular diagnostics. Grading of Recommendations Assessment, Development and Evaluation (GRADE) methodology was used to assess the certainty of evidence and make testing recommendations. RESULTS: The panel agreed on 17 diagnostic recommendations. CONCLUSIONS: Universal access to accurate SARS-CoV-2 nucleic acid testing is critical for patient care, hospital infection prevention and the public response to the COVID-19 pandemic. Information on the clinical performance of available tests is rapidly emerging, but the quality of evidence of the current literature is considered moderate to very low. Recognizing these limitations, the IDSA panel weighed available diagnostic evidence and recommends nucleic acid testing for all symptomatic individuals suspected of having COVID-19. In addition, testing is recommended for asymptomatic individuals with known or suspected contact with a COVID-19 case. Testing asymptomatic individuals without known exposure is suggested when the results will impact isolation/quarantine/personal protective equipment (PPE) usage decisions, dictate eligibility for surgery, or inform solid organ or hematopoietic stem cell transplantation timing. Ultimately, prioritization of testing will depend on institutional-specific resources and the needs of different patient populations.

15.
MMWR Morb Mortal Wkly Rep ; 69(50): 1922-1924, 2020 Dec 18.
Article in English | MEDLINE | ID: covidwho-1016447

ABSTRACT

On December 11, 2020, the Food and Drug Administration (FDA) issued an Emergency Use Authorization (EUA) for the Pfizer-BioNTech COVID-19 (BNT162b2) vaccine (Pfizer, Inc; Philadelphia, Pennsylvania), a lipid nanoparticle-formulated, nucleoside-modified mRNA vaccine encoding the prefusion spike glycoprotein of SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19) (1). Vaccination with the Pfizer-BioNTech COVID-19 vaccine consists of 2 doses (30 µg, 0.3 mL each) administered intramuscularly, 3 weeks apart. On December 12, 2020, the Advisory Committee on Immunization Practices (ACIP) issued an interim recommendation* for use of the Pfizer-BioNTech COVID-19 vaccine in persons aged ≥16 years for the prevention of COVID-19. To guide its deliberations regarding the vaccine, ACIP employed the Evidence to Recommendation (EtR) Framework,† using the Grading of Recommendations, Assessment, Development and Evaluation (GRADE) approach.§ The recommendation for the Pfizer-BioNTech COVID-19 vaccine should be implemented in conjunction with ACIP's interim recommendation for allocating initial supplies of COVID-19 vaccines (2). The ACIP recommendation for the use of the Pfizer-BioNTech COVID-19 vaccine under EUA is interim and will be updated as additional information becomes available.


Subject(s)
COVID-19 Vaccines/administration & dosage , Immunization/standards , Practice Guidelines as Topic , Adolescent , Adult , Adverse Drug Reaction Reporting Systems , Advisory Committees , Aged , Aged, 80 and over , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Drug Approval , Humans , Middle Aged , United States/epidemiology , Young Adult
16.
J Clin Epidemiol ; 129: 1-11, 2021 01.
Article in English | MEDLINE | ID: covidwho-1012425

ABSTRACT

OBJECTIVES: The aim of this study is to propose an approach for developing trustworthy recommendations as part of urgent responses (1-2 week) in the clinical, public health, and health systems fields. STUDY DESIGN AND SETTING: We conducted a review of the literature, outlined a draft approach, refined the concept through iterative discussions, a workshop by the Grading of Recommendations Assessment, Development and Evaluation Rapid Guidelines project group, and obtained feedback from the larger Grading of Recommendations Assessment, Development and Evaluation working group. RESULTS: A request for developing recommendations within 2 week is the usual trigger for an urgent response. Although the approach builds on the general principles of trustworthy guideline development, we highlight the following steps: (1) assess the level of urgency; (2) assess feasibility; (3) set up the organizational logistics; (4) specify the question(s); (5) collect the information needed; (6) assess the adequacy of identified information; (7) develop the recommendations using one of the 4 potential approaches: adopt existing recommendations, adapt existing recommendations, develop new recommendations using existing adequate systematic review, or develop new recommendations using expert panel input; and (8) consider an updating plan. CONCLUSION: An urgent response for developing recommendations requires building a cohesive, skilled, and highly motivated multidisciplinary team with the necessary clinical, scientific, and methodological expertise; adapting to shifting needs; complying with the principles of transparency; and properly managing conflicts of interest.


Subject(s)
Information Management , Practice Guidelines as Topic/standards , Consensus , Evidence-Based Medicine/standards , Evidence-Based Medicine/trends , Humans , Information Management/methods , Information Management/organization & administration , Outcome Assessment, Health Care/methods , Outcome Assessment, Health Care/organization & administration , Systematic Reviews as Topic
17.
MMWR Morb Mortal Wkly Rep ; 69(5152): 1653-1656, 2021 Jan 01.
Article in English | MEDLINE | ID: covidwho-1005174

ABSTRACT

On December 18, 2020, the Food and Drug Administration (FDA) issued an Emergency Use Authorization (EUA) for the Moderna COVID-19 (mRNA-1273) vaccine (ModernaTX, Inc; Cambridge, Massachusetts), a lipid nanoparticle-encapsulated, nucleoside-modified mRNA vaccine encoding the stabilized prefusion spike glycoprotein of SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19) (1). This vaccine is the second COVID-19 vaccine authorized under an EUA for the prevention of COVID-19 in the United States (2). Vaccination with the Moderna COVID-19 vaccine consists of 2 doses (100 µg, 0.5 mL each) administered intramuscularly, 1 month (4 weeks) apart. On December 19, 2020, the Advisory Committee on Immunization Practices (ACIP) issued an interim recommendation* for use of the Moderna COVID-19 vaccine in persons aged ≥18 years for the prevention of COVID-19. To guide its deliberations regarding the vaccine, ACIP employed the Evidence to Recommendation (EtR) Framework,† using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach.§ Use of all COVID-19 vaccines authorized under an EUA, including the Moderna COVID-19 vaccine, should be implemented in conjunction with ACIP's interim recommendations for allocating initial supplies of COVID-19 vaccines (3). The ACIP recommendation for the use of the Moderna COVID-19 vaccine under EUA is interim and will be updated as additional information becomes available.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Immunization/standards , Practice Guidelines as Topic , Adolescent , Adult , Adverse Drug Reaction Reporting Systems , Advisory Committees , Aged , Aged, 80 and over , COVID-19/epidemiology , COVID-19 Vaccines/adverse effects , Centers for Disease Control and Prevention, U.S. , Clinical Trials, Phase III as Topic , Drug Approval , Emergencies , Humans , Middle Aged , Randomized Controlled Trials as Topic , United States/epidemiology , United States Food and Drug Administration , Young Adult
18.
Clin Infect Dis ; 2020 Sep 12.
Article in English | MEDLINE | ID: covidwho-756880

ABSTRACT

BACKGROUND: The availability of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) serologic testing has rapidly increased. Current assays use a variety of technologies, measure different classes of immunoglobulin or immunoglobulin combinations and detect antibodies directed against different portions of the virus. The overall accuracy of these tests, however, has not been well-defined. The Infectious Diseases Society of America (IDSA) convened an expert panel to perform a systematic review of the coronavirus disease 2019 (COVID-19) serology literature and construct best practice guidance related to SARS-CoV-2 serologic testing. This guideline is the fourth in a series of rapid, frequently updated COVID-19 guidelines developed by IDSA. OBJECTIVE: IDSA's goal was to develop evidence-based recommendations that assist clinicians, clinical laboratories, patients and policymakers in decisions related to the optimal use of SARS-CoV-2 serologic tests in a variety of settings. We also highlight important unmet research needs pertaining to the use of anti-SARS-CoV-2 antibody tests for diagnosis, public health surveillance, vaccine development and the selection of convalescent plasma donors. METHODS: A multidisciplinary panel of infectious diseases clinicians, clinical microbiologists and experts in systematic literature review identified and prioritized clinical questions related to the use of SARS-CoV-2 serologic tests. Grading of Recommendations Assessment, Development and Evaluation (GRADE) methodology was used to assess the certainty of evidence and make testing recommendations. RESULTS: The panel agreed on eight diagnostic recommendations. CONCLUSIONS: Information on the clinical performance and utility of SARS-CoV-2 serologic tests are rapidly emerging. Based on available evidence, detection of anti-SARS-CoV-2 antibodies may be useful for confirming the presence of current or past infection in selected situations. The panel identified three potential indications for serologic testing including: 1) evaluation of patients with a high clinical suspicion for COVID-19 when molecular diagnostic testing is negative and at least two weeks have passed since symptom onset; 2) assessment of multisystem inflammatory syndrome in children; and 3) for conducting serosurveillance studies. The certainty of available evidence supporting the use of serology for either diagnosis or epidemiology was, however, graded as very low to moderate.

19.
Clin Infect Dis ; 2020 Jun 16.
Article in English | MEDLINE | ID: covidwho-608444

ABSTRACT

BACKGROUND: Accurate molecular diagnostic tests are necessary for confirming a diagnosis of coronavirus disease 2019 (COVID-19). Direct detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleic acids in respiratory tract specimens informs patient, healthcare institution and public health level decision-making. The numbers of available SARS-CoV-2 nucleic acid detection tests are rapidly increasing, as is the COVID-19 diagnostic literature. Thus, the Infectious Diseases Society of America (IDSA) recognized a significant need for frequently updated systematic reviews of the literature to inform evidence-based best practice guidance. OBJECTIVE: The IDSA's goal was to develop an evidence-based diagnostic guideline to assists clinicians, clinical laboratorians, patients and policymakers in decisions related to the optimal use of SARS-CoV-2 nucleic acid amplification tests. In addition, we provide a conceptual framework for understanding molecular diagnostic test performance, discuss the nuance of test result interpretation in a variety of practice settings, and highlight important unmet research needs in the COVID-19 diagnostic testing space. METHODS: IDSA convened a multidisciplinary panel of infectious diseases clinicians, clinical microbiologists, and experts in systematic literature review to identify and prioritize clinical questions and outcomes related to the use of SARS-CoV-2 molecular diagnostics. Grading of Recommendations Assessment, Development and Evaluation (GRADE) methodology was used to assess the certainty of evidence and make testing recommendations. RESULTS: The panel agreed on 15 diagnostic recommendations. CONCLUSIONS: Universal access to accurate SARS-CoV-2 nucleic acid testing is critical for patient care, hospital infection prevention and the public response to the COVID-19 pandemic. Information on the clinical performance of available tests is rapidly emerging, but the quality of evidence of the current literature is considered low to very low. Recognizing these limitations, the IDSA panel weighed available diagnostic evidence and recommends nucleic acid testing for all symptomatic individuals suspected of having COVID-19. In addition, testing is recommended for asymptomatic individuals with known or suspected contact with a COVID-19 case. Testing asymptomatic individuals without known exposure is suggested when the results will impact isolation/quarantine/personal protective equipment (PPE) usage decisions, dictate eligibility for surgery, or inform administration of immunosuppressive therapy. Ultimately, prioritization of testing will depend on institutional-specific resources and the needs of different patient populations.

20.
Clin Infect Dis ; 2020 Apr 27.
Article in English | MEDLINE | ID: covidwho-125368

ABSTRACT

BACKGROUND: There are many pharmacologic therapies that are being used or considered for treatment of COVID-19. There is a need for frequently updated practice guidelines on their use, based on critical evaluation of rapidly emerging literature. OBJECTIVE: Develop evidence-based rapid guidelines intended to support patients, clinicians and other health-care professionals in their decisions about treatment and management of patients with COVID-19. METHODS: IDSA formed a multidisciplinary guideline panel of infectious disease clinicians, pharmacists, and methodologists with varied areas of expertise. Process followed a rapid recommendation checklist. The panel prioritized questions and outcomes. Then a systematic review of the peer-reviewed and grey literature was conducted. The Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach was used to assess the certainty of evidence and make recommendations. RESULTS: The IDSA guideline panel agreed on 7 treatment recommendations and provided narrative summaries of other treatments undergoing evaluations. CONCLUSIONS: The panel expressed the overarching goal that patients be recruited into ongoing trials, which would provide much needed evidence on the efficacy and safety of various therapies for COVID-19, given that we could not make a determination whether the benefits outweigh harms for most treatments.

SELECTION OF CITATIONS
SEARCH DETAIL