Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
J Infect Chemother ; 2022 Oct 17.
Article in English | MEDLINE | ID: covidwho-2243493

ABSTRACT

INTRODUCTION: The lateral flow antigen test is a useful tool for rapid diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. The analytical sensitivity of six lateral flow antigen test kits was compared. METHODS: The limit of detection (LoD) and time to positive results were evaluated for six lateral flow tests including ImmunoArrow®, ESPLINE® SARS-CoV-2, QuickNavi™ COVID19 Ag, ImmunoAce® SARS-CoV-2, Panbio™ COVID-19 Ag Rapid Test Device, and SARS-CoV-2 Rapid Antigen Test using the heat-inactivated virus. The LoD of ImmunoArrow® against the Omicron variants was compared with that against the wild-type using recombinant proteins. RESULTS: ImmunoArrow® and ESPLINE® showed the lowest LoD. The time to positive results of all tests except for ESPLINE® was within 200 s in the evaluation at high dose of antigens (2.5 × 105 TCID50/mL) and 500 s in the evaluation at low dose of antigens (2.5 × 104 TCID50/mL). The LoD of ImmunoArrow® against the Omicron variants was the same concentration against the wild-type antigen. CONCLUSIONS: ImmunoArrow® detected SARS-CoV-2 antigens including the Omicron variants with good sensitivity among the six lateral flow antigen tests. These finding support that it can support the rapid diagnosis of COVID-19 with the good sensitivity.

2.
Sci Rep ; 12(1): 11125, 2022 07 01.
Article in English | MEDLINE | ID: covidwho-2028698

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a biosafety level (BSL)-3 pathogen; therefore, its research environment is limited. Pseudotyped viruses that mimic the infection of SARS-CoV-2 have been widely used for in vitro evaluation because they are available in BSL-2 containment laboratories. However, in vivo application is inadequate. Therefore, animal models instigated with animal BSL-2 will provide opportunities for in vivo evaluation. Hamsters (6-10-week-old males) were intratracheally inoculated with luciferase-expressing vesicular stomatitis virus (VSV)-based SARS-CoV-2 pseudotyped virus. The lungs were harvested 24-72 h after inoculation and luminescence was measured using an in vivo imaging system. Lung luminescence after inoculation with the SARS-CoV-2 pseudotyped virus increased in a dose-dependent manner and peaked at 48 h. The VSV-G (envelope G) pseudotyped virus also induced luminescence; however, a 100-fold concentration was required to reach a level similar to that of the SARS-CoV-2 pseudotyped virus. The SARS-CoV-2 pseudotyped virus is applicable to SARS-CoV-2 respiratory infections in a hamster model. Because of the single-round infectious virus, the model can be used to study the steps from viral binding to entry, which will be useful for future research on SARS-CoV-2 entry without using live SARS-CoV-2 or transgenic animals.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Cricetinae , Male , Respiratory Rate , Respiratory System , Viral Pseudotyping
3.
MAbs ; 14(1): 2072455, 2022.
Article in English | MEDLINE | ID: covidwho-1839974

ABSTRACT

Many potent neutralizing SARS-CoV-2 antibodies have been developed and used for therapies. However, the effectiveness of many antibodies has been reduced against recently emerging SARS-CoV-2 variants, especially the Omicron variant. We identified a highly potent SARS-CoV-2 neutralizing antibody, UT28K, in COVID-19 convalescent individuals who recovered from a severe condition. UT28K showed efficacy in neutralizing SARS-CoV-2 in an in vitro assay and in vivo prophylactic treatment, and the reactivity to the Omicron strain was reduced. The structural analyses revealed that antibody UT28K Fab and SARS-CoV-2 RBD protein interactions were mainly chain-dominated antigen-antibody interactions. In addition, a mutation analysis suggested that the emergence of a UT28K neutralization-resistant SARS-CoV-2 variant was unlikely, as this variant would likely lose its competitive advantage over circulating SARS-CoV-2. Our data suggest that UT28K offers potent protection against SARS-CoV-2, including newly emerging variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , Humans
4.
J Infect Chemother ; 27(6): 820-825, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1045151

ABSTRACT

INTRODUCTION: Digital immunoassays (DIAs) and molecular point-of-care (POC) tests for influenza were recently developed. We aimed to evaluate and compare the positive rate with molecular POC tests and DIAs in detecting influenza virus A, B and respiratory syncytial virus (RSV). METHODS: A prospective observational study was conducted in 2019-2020. Nasopharyngeal swab samples were collected from adult outpatients with influenza-like illness who visited four hospitals and clinics in Japan. DIAs were performed at each facility. The clinical diagnosis was determined based on the findings of DIAs, history taking, and physical assessment. Molecular POC test and reverse transcription polymerase chain reaction (RT-PCR) were performed later. RESULTS: A total of 182 patients were evaluated. The positive rate for influenza virus with molecular POC test was significantly higher than that with DIAs (51.6% versus 40.7%, p = 0.046). In patients who tested positive for influenza virus with only molecular POC test, the presence of influenza virus was confirmed by RT-PCR. In a comparison between the patients who were positive for influenza virus with only molecular POC test and those with both molecular POC test and DIA, the percentage of patients who sought consultation within 18 h after the onset of symptoms was significantly higher in the molecular POC test only group than in the both methods group (70.0% versus 43.2%, p = 0.044). CONCLUSIONS: A molecular POC test could contribute to the accurate diagnosis of influenza in patients with influenza-like illness, especially those who visited a hospital immediately after the onset of symptoms.


Subject(s)
Influenza A virus , Influenza, Human , Orthomyxoviridae , Respiratory Syncytial Virus Infections , Adult , Humans , Immunoassay , Influenza A virus/genetics , Influenza B virus/genetics , Influenza, Human/diagnosis , Japan , Orthomyxoviridae/genetics , Point-of-Care Systems , Point-of-Care Testing , Respiratory Syncytial Virus Infections/diagnosis , Sensitivity and Specificity
5.
PLoS One ; 15(12): e0243597, 2020.
Article in English | MEDLINE | ID: covidwho-967413

ABSTRACT

OBJECTIVE: To investigate the relationship between viral load and secondary transmission in novel coronavirus disease 2019 (COVID-19). METHODS: Epidemiological and clinical data were obtained from immunocompetent laboratory-confirmed patients with COVID-19 who were admitted to and/or from whom viral loads were measured at Toyama University Hospital. Using a case-control approach, index patients who transmitted the disease to at least one other patient were analysed as "cases" (index patients) compared with patients who were not the cause of secondary transmission (non-index patients, analysed as "controls"). The viral load time courses were assessed between the index and non-index symptomatic patients using non-linear regression employing a standard one-phase decay model. RESULTS: In total, 28 patients were included in the analysis. Median viral load at the initial sample collection was significantly higher in symptomatic than in asymptomatic patients and in adults than in children. Among symptomatic patients (n = 18), non-linear regression models showed that the estimated viral load at onset was higher in the index than in the non-index patients (median [95% confidence interval]: 6.6 [5.2-8.2] vs. 3.1 [1.5-4.8] log copies/µL, respectively). In adult (symptomatic and asymptomatic) patients (n = 21), median viral load at the initial sample collection was significantly higher in the index than in the non-index patients (p = 0.015, 3.3 vs. 1.8 log copies/µL, respectively). CONCLUSIONS: High nasopharyngeal viral loads around onset may contribute to secondary transmission of COVID-19. Viral load may help provide a better understanding of why transmission is observed in some instances, but not in others, especially among household contacts.


Subject(s)
COVID-19 , Models, Biological , Nasopharynx , SARS-CoV-2/metabolism , Viral Load , Adolescent , Adult , Aged , COVID-19/metabolism , COVID-19/transmission , Case-Control Studies , Child , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged , Nasopharynx/metabolism , Nasopharynx/virology
7.
J Infect Chemother ; 26(12): 1324-1327, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-723195

ABSTRACT

Most patients with coronavirus disease 2019 (COVID-19) have just only mild symptoms, but about 5% are very severe. Although extracorporeal membranous oxygenation (ECMO) is sometimes used in critically patients with COVID-19, ECMO is only an adjunct, not the main treatment. If the patient's condition deteriorates and it is determined to be irreversible, it is necessary to decide to stop ECMO. A 54-year-old man was admitted on day 6 of onset with a chief complaint of high fever and cough. Computed tomography (CT) showed a ground glass opacity in both lungs, and reverse transcription-polymerase chain reaction (RT-PCR) diagnosed COVID-19. He was admitted to the hospital and started to receive oxygen and favipiravir. After that, his respiratory condition deteriorated, and he was intubated and ventilated on day 9 of onset, and ECMO was introduced on day 12. Two days after the introduction of ECMO, C-reactive protein (CRP) increased, chest X-p showed no improvement in pneumonia, and PaO2/FiO2 decreased again. As D-dimer rose and found a blood clot in the ECMO circuit, we had to decide whether to replace the circuit and continue with ECMO or stop ECMO. At this time, the viral load by RT-PCR was drastically reduced to about 1/1750. We decided to continue ECMO therapy and replaced the circuit. The patient's respiratory status subsequently improved and ECMO was stopped on day 21 of onset. In conclusion, viral load measurement by RT-PCR may be one of the indicators for promoting the treatment of severe COVID-19 patients.


Subject(s)
Betacoronavirus/isolation & purification , Coronavirus Infections/therapy , Coronavirus Infections/virology , Extracorporeal Membrane Oxygenation/methods , Pneumonia, Viral/therapy , Pneumonia, Viral/virology , Viral Load/methods , Amides/therapeutic use , Antiviral Agents/therapeutic use , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques , Coronavirus Infections/diagnosis , Decision Making , Hospitalization , Humans , Lung/diagnostic imaging , Male , Middle Aged , Pandemics , Pneumonia, Viral/diagnosis , Pyrazines/therapeutic use , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2 , Tomography, X-Ray Computed , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL