Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Hematol Oncol ; 2022 Jul 19.
Article in English | MEDLINE | ID: covidwho-1935680


The impact of secondary infections (SI) on COVID-19 outcome in patients with hematological malignancies (HM) is scarcely documented. To evaluate incidence, clinical characteristics, and outcome of SI, we analyzed the microbiologically documented SI in a large multicenter cohort of adult HM patients with COVID-19. Among 1741 HM patients with COVID-19, 134 (7.7%) had 185 SI, with a 1-month cumulative incidence of 5%. Median time between COVID-19 diagnosis and SI was 16 days (IQR: 5-36). Acute myeloid leukemia (AML) and lymphoma/plasma cell neoplasms (PCN) were more frequent diagnoses in SI patients compared to patients without SI (AML: 14.9% vs. 7.1%; lymphoma/PCN 71.7% vs. 65.3%). Patients with SI were older (median age 70 vs. 66 years, p = 0.002), with more comorbidities (median Charlson Comorbidity Index 5 vs. 4, p < 0.001), higher frequency of critical COVID-19 (19.5% vs. 11.5%, p = 0.046), and more frequently not in complete remission (75% vs. 64.7% p = 0.024). Blood and bronchoalveolar lavage were the main sites of isolation for SI. Etiology of infections was bacterial in 80% (n = 148) of cases, mycotic in 9.7% (n = 18) and viral in 10.3% (n = 19); polymicrobial infections were observed in 24 patients (18%). Escherichia coli represented most of Gram-negative isolates (18.9%), while coagulase-negative Staphylococci were the most frequent among Gram-positive (14.2%). The 30-day mortality of patients with SI was higher when compared to patients without SI (69% vs. 15%, p < 0.001). The occurrence of SI worsened COVID-19 outcome in HM patients. Timely diagnosis and adequate management should be considered to improve their prognosis.

Int J Mol Sci ; 22(24)2021 Dec 20.
Article in English | MEDLINE | ID: covidwho-1580687


COVID-19 infection is associated with a broad spectrum of presentations, but alveolar capillary microthrombi have been described as a common finding in COVID-19 patients, appearing as a consequence of a severe endothelial injury with endothelial cell membrane disruption. These observations clearly point to the identification of a COVID-19-associated coagulopathy, which may contribute to thrombosis, multi-organ damage, and cause of severity and fatality. One significant finding that emerges in prothrombotic abnormalities observed in COVID-19 patients is that the coagulation alterations are mainly mediated by the activation of platelets and intrinsically related to viral-mediated endothelial inflammation. Beyond the well-known role in hemostasis, the ability of platelets to also release various potent cytokines and chemokines has elevated these small cells from simple cell fragments to crucial modulators in the blood, including their inflammatory functions, that have a large influence on the immune response during infectious disease. Indeed, platelets are involved in the pathogenesis of acute lung injury also by promoting NET formation and affecting vascular permeability. Specifically, the deposition by activated platelets of the chemokine platelet factor 4 at sites of inflammation promotes adhesion of neutrophils on endothelial cells and thrombogenesis, and it seems deeply involved in the phenomenon of vaccine-induced thrombocytopenia and thrombosis. Importantly, the hyperactivated platelet phenotype along with evidence of cytokine storm, high levels of P-selectin, D-dimer, and, on the other hand, decreased levels of fibrinogen, von Willebrand factor, and thrombocytopenia may be considered suitable biomarkers that distinguish the late stage of COVID-19 progression in critically ill patients.

Blood Platelets/physiology , COVID-19/blood , Thrombosis/pathology , Blood Coagulation , Blood Coagulation Disorders/etiology , Blood Platelets/metabolism , Blood Platelets/virology , COVID-19/metabolism , Cytokine Release Syndrome , Endothelial Cells/pathology , Fibrin Fibrinogen Degradation Products , Hemostasis , Humans , Inflammation , Phenotype , Platelet Activation/physiology , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Thrombocytopenia/metabolism , Thrombosis/metabolism , Thrombosis/virology
Lancet Haematol ; 7(10): e737-e745, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-712017


BACKGROUND: Several small studies on patients with COVID-19 and haematological malignancies are available showing a high mortality in this population. The Italian Hematology Alliance on COVID-19 aimed to collect data from adult patients with haematological malignancies who required hospitalisation for COVID-19. METHODS: This multicentre, retrospective, cohort study included adult patients (aged ≥18 years) with diagnosis of a WHO-defined haematological malignancy admitted to 66 Italian hospitals between Feb 25 and May 18, 2020, with laboratory-confirmed and symptomatic COVID-19. Data cutoff for this analysis was June 22, 2020. The primary outcome was mortality and evaluation of potential predictive parameters of mortality. We calculated standardised mortality ratios between observed death in the study cohort and expected death by applying stratum-specific mortality rates of the Italian population with COVID-19 and an Italian cohort of 31 993 patients with haematological malignancies without COVID-19 (data up to March 1, 2019). Multivariable Cox proportional hazards model was used to identify factors associated with overall survival. This study is registered with, NCT04352556, and the prospective part of the study is ongoing. FINDINGS: We enrolled 536 patients with a median follow-up of 20 days (IQR 10-34) at data cutoff, 85 (16%) of whom were managed as outpatients. 440 (98%) of 451 hospitalised patients completed their hospital course (were either discharged alive or died). 198 (37%) of 536 patients died. When compared with the general Italian population with COVID-19, the standardised mortality ratio was 2·04 (95% CI 1·77-2·34) in our whole study cohort and 3·72 (2·86-4·64) in individuals younger than 70 years. When compared with the non-COVID-19 cohort with haematological malignancies, the standardised mortality ratio was 41·3 (38·1-44·9). Older age (hazard ratio 1·03, 95% CI 1·01-1·05); progressive disease status (2·10, 1·41-3·12); diagnosis of acute myeloid leukaemia (3·49, 1·56-7·81), indolent non-Hodgin lymphoma (2·19, 1·07-4·48), aggressive non-Hodgkin lymphoma (2·56, 1·34-4·89), or plasma cell neoplasms (2·48, 1·31-4·69), and severe or critical COVID-19 (4·08, 2·73-6·09) were associated with worse overall survival. INTERPRETATION: This study adds to the evidence that patients with haematological malignancies have worse outcomes than both the general population with COVID-19 and patients with haematological malignancies without COVID-19. The high mortality among patients with haematological malignancies hospitalised with COVID-19 highlights the need for aggressive infection prevention strategies, at least until effective vaccination or treatment strategies are available. FUNDING: Associazione italiana contro le leucemie, linfomi e mieloma-Varese Onlus.

Betacoronavirus , Coronavirus Infections/epidemiology , Hematologic Neoplasms/epidemiology , Pandemics , Pneumonia, Viral/epidemiology , Adult , Aged , Aged, 80 and over , COVID-19 , Comorbidity , Coronavirus Infections/drug therapy , Female , Follow-Up Studies , Hematologic Neoplasms/therapy , Humans , Inpatients , Italy/epidemiology , Leukemia/epidemiology , Leukemia/therapy , Lymphoma, Non-Hodgkin/epidemiology , Lymphoma, Non-Hodgkin/therapy , Male , Middle Aged , Myeloproliferative Disorders/epidemiology , Myeloproliferative Disorders/therapy , Neoplasms, Plasma Cell/epidemiology , Neoplasms, Plasma Cell/therapy , Retrospective Studies , Risk Factors , SARS-CoV-2 , Young Adult