Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Science ; : eabp8337, 2022 Jul 26.
Article in English | MEDLINE | ID: covidwho-1962060

ABSTRACT

Understanding the circumstances that lead to pandemics is important for their prevention. Here, we analyze the genomic diversity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) early in the coronavirus disease 2019 (COVID-19) pandemic. We show that SARS-CoV-2 genomic diversity before February 2020 likely comprised only two distinct viral lineages, denoted A and B. Phylodynamic rooting methods, coupled with epidemic simulations, reveal that these lineages were the result of at least two separate cross-species transmission events into humans. The first zoonotic transmission likely involved lineage B viruses around 18 November 2019 (23 October-8 December), while the separate introduction of lineage A likely occurred within weeks of this event. These findings indicate that it is unlikely that SARS-CoV-2 circulated widely in humans prior to November 2019 and define the narrow window between when SARS-CoV-2 first jumped into humans and when the first cases of COVID-19 were reported. As with other coronaviruses, SARS-CoV-2 emergence likely resulted from multiple zoonotic events.

2.
Nature ; 2022 Jul 07.
Article in English | MEDLINE | ID: covidwho-1921636

ABSTRACT

As SARS-CoV-2 continues to spread and evolve, detecting emerging variants early is critical for public health interventions. Inferring lineage prevalence by clinical testing is infeasible at scale, especially in areas with limited resources, participation, or testing/sequencing capacity, which can also introduce biases1-3. SARS-CoV-2 RNA concentration in wastewater successfully tracks regional infection dynamics and provides less biased abundance estimates than clinical testing4,5. Tracking virus genomic sequences in wastewater would improve community prevalence estimates and detect emerging variants. However, two factors limit wastewater-based genomic surveillance: low-quality sequence data and inability to estimate relative lineage abundance in mixed samples. Here, we resolve these critical issues to perform a high-resolution, 295-day wastewater and clinical sequencing effort, in the controlled environment of a large university campus and the broader context of the surrounding county. We develop and deploy improved virus concentration protocols and deconvolution software that fully resolve multiple virus strains from wastewater. We detect emerging variants of concern up to 14 days earlier in wastewater samples, and identify multiple instances of virus spread not captured by clinical genomic surveillance. Our study provides a scalable solution for wastewater genomic surveillance that allows early detection of SARS-CoV-2 variants and identification of cryptic transmission.

3.
Sci Rep ; 12(1): 5077, 2022 03 24.
Article in English | MEDLINE | ID: covidwho-1815587

ABSTRACT

Throughout the COVID-19 pandemic, massive sequencing and data sharing efforts enabled the real-time surveillance of novel SARS-CoV-2 strains throughout the world, the results of which provided public health officials with actionable information to prevent the spread of the virus. However, with great sequencing comes great computation, and while cloud computing platforms bring high-performance computing directly into the hands of all who seek it, optimal design and configuration of a cloud compute cluster requires significant system administration expertise. We developed ViReflow, a user-friendly viral consensus sequence reconstruction pipeline enabling rapid analysis of viral sequence datasets leveraging Amazon Web Services (AWS) cloud compute resources and the Reflow system. ViReflow was developed specifically in response to the COVID-19 pandemic, but it is general to any viral pathogen. Importantly, when utilized with sufficient compute resources, ViReflow can trim, map, call variants, and call consensus sequences from amplicon sequence data from 1000 SARS-CoV-2 samples at 1000X depth in < 10 min, with no user intervention. ViReflow's simplicity, flexibility, and scalability make it an ideal tool for viral molecular epidemiological efforts.


Subject(s)
COVID-19 , Software , COVID-19/epidemiology , Genome, Viral/genetics , Humans , Pandemics , SARS-CoV-2/genetics
5.
Science ; 372(6540): 412-417, 2021 04 23.
Article in English | MEDLINE | ID: covidwho-1199748

ABSTRACT

Understanding when severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged is critical to evaluating our current approach to monitoring novel zoonotic pathogens and understanding the failure of early containment and mitigation efforts for COVID-19. We used a coalescent framework to combine retrospective molecular clock inference with forward epidemiological simulations to determine how long SARS-CoV-2 could have circulated before the time of the most recent common ancestor of all sequenced SARS-CoV-2 genomes. Our results define the period between mid-October and mid-November 2019 as the plausible interval when the first case of SARS-CoV-2 emerged in Hubei province, China. By characterizing the likely dynamics of the virus before it was discovered, we show that more than two-thirds of SARS-CoV-2-like zoonotic events would be self-limited, dying out without igniting a pandemic. Our findings highlight the shortcomings of zoonosis surveillance approaches for detecting highly contagious pathogens with moderate mortality rates.


Subject(s)
COVID-19/epidemiology , COVID-19/virology , Genome, Viral , Pandemics , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Animals , COVID-19/transmission , China/epidemiology , Computer Simulation , Evolution, Molecular , Genetic Fitness , Humans , Models, Theoretical , Phylogeny , Retrospective Studies , Viral Zoonoses
6.
bioRxiv ; 2020 Nov 24.
Article in English | MEDLINE | ID: covidwho-955722

ABSTRACT

Understanding when SARS-CoV-2 emerged is critical to evaluating our current approach to monitoring novel zoonotic pathogens and understanding the failure of early containment and mitigation efforts for COVID-19. We employed a coalescent framework to combine retrospective molecular clock inference with forward epidemiological simulations to determine how long SARS-CoV-2 could have circulated prior to the time of the most recent common ancestor. Our results define the period between mid-October and mid-November 2019 as the plausible interval when the first case of SARS-CoV-2 emerged in Hubei province. By characterizing the likely dynamics of the virus before it was discovered, we show that over two-thirds of SARS-CoV-2-like zoonotic events would be self-limited, dying out without igniting a pandemic. Our findings highlight the shortcomings of zoonosis surveillance approaches for detecting highly contagious pathogens with moderate mortality rates.

SELECTION OF CITATIONS
SEARCH DETAIL