Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
1.
JAMA Netw Open ; 5(11): e2244141, 2022 Nov 01.
Article in English | MEDLINE | ID: covidwho-2127462

ABSTRACT

Importance: Pregnant people are at increased risk of poor outcomes due to infection with SARS-CoV-2, and there are limited therapeutic options available. Objective: To evaluate the clinical outcomes associated with nirmatrelvir and ritonavir used to treat SARS-CoV-2 infection in pregnant patients. Design, Setting, and Participants: This case series included pregnant patients who were diagnosed with SARS-CoV-2 infection, received nirmatrelvir and ritonavir, and delivered their offspring within the Johns Hopkins Health System between December 22, 2021, and August 20, 2022. Exposures: Treatment with nirmatrelvir and ritonavir for SARS-CoV-2 infection during pregnancy. Main Outcomes and Measures: Clinical characteristics and outcomes were ascertained through manual record review. Results: Forty-seven pregnant patients (median [range] age, 34 [22-43] years) were included in the study, and the median (range) gestational age of their offspring was 28.4 (4.3-39.6) weeks. Medication was initiated at a median (range) of 1 (0-5) day after symptom onset, and only 2 patients [4.3%] did not complete the course of therapy because of adverse effects. Thirty patients (63.8%) treated with nirmatrelvir and ritonavir had a comorbidity in addition to pregnancy that could be a risk factor for developing severe COVID-19. Twenty-five patients [53.2%] delivered after treatment with nirmatrelvir and ritonavir. Twelve of these patients [48.0%] underwent cesarean delivery, 9 [75.0%] of which were scheduled. Two of 47 patients [4.3%] were hospitalized for conditions related to preexisting comorbidities. Conclusions and Relevance: In this case series, pregnant patients who were treated with nirmatrelvir and ritonavir tolerated treatment well, although there was an unexpectedly high rate of cesarean deliveries. The lack of an increase in serious adverse effects affecting pregnant patients or offspring suggests that clinicians can use this drug combination to treat pregnant patients with SARS-CoV-2 infection.

2.
Clin Infect Dis ; 2022 Nov 11.
Article in English | MEDLINE | ID: covidwho-2117384

ABSTRACT

BACKGROUND: The variant of concern, Omicron, has become the sole circulating SARS-CoV-2 variant for the past several months. Omicron subvariants BA.1, BA.2, BA.3, BA.4, and BA.5 evolved over the time, with BA.1 causing the largest wave of infections globally in December 2021- January 2022. In this study, we compare the clinical outcomes in patients infected with different Omicron subvariants and compare the relative viral loads, and recovery of infectious virus from upper respiratory specimens. METHODS: SARS-CoV-2 positive remnant clinical specimens, diagnosed at the Johns Hopkins Microbiology Laboratory between December 2021 and July 2022, were used for whole genome sequencing. The clinical outcomes of infections with Omicron subvariants were compared to infections with BA.1. Cycle threshold values (Ct) and the recovery of infectious virus on VeroTMPRSS2 cell line from clinical specimens were compared. RESULTS: The BA.1 was associated with the largest increase in SARS-CoV-2 positivity rate and COVID-19 related hospitalizations at the Johns Hopkins system. After a peak in January, cases fell in the spring, but the emergence of BA.2.12.1 followed by BA.5 in May 2022 led to an increase in case positivity and admissions. BA.1 infections had a lower mean Ct when compared to other Omicron subvariants. BA.5 samples had a greater likelihood of having infectious virus at Ct values less than 20. CONCLUSIONS: Omicron subvariants continue to be associated with a relatively high rate of PCR positivity and hospital admissions. The BA.5 infections are more while BA.2 infections are less likely to have infectious virus, suggesting potential differences in infectibility during the Omicron waves.

4.
Open Forum Infect Dis ; 9(9): ofac479, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-2051517

ABSTRACT

We describe the case of a patient with AIDS who had persistent infection with a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Delta variant for >80 days. The variant contained mutations that were not present in other Delta viruses in our hospital. Prolonged infection in immunosuppressed individuals may lead to evolution of SARS-CoV-2 lineages.

5.
JCI Insight ; 7(20)2022 10 24.
Article in English | MEDLINE | ID: covidwho-2020639

ABSTRACT

BACKGROUNDIncreased SARS-CoV-2 reinfection rates have been reported recently, with some locations basing reinfection on a second positive PCR test at least 90 days after initial infection. In this study, we used Johns Hopkins SARS-CoV-2 genomic surveillance data to evaluate the frequency of sequencing-validated, confirmed, and inferred reinfections between March 2020 and July 2022.METHODSPatients who had 2 or more positive SARS-CoV-2 tests in our system, with samples sequenced as a part of our surveillance efforts, were identified as the cohort for our study. SARS-CoV-2 genomes of patients' initial and later samples were compared.RESULTSA total of 755 patients (920 samples) had a positive test at least 90 days after the initial test, with a median time between tests of 377 days. Sequencing was attempted on 231 samples and was successful in 127. Rates of successful sequencing spiked during the Omicron surge; there was a higher median number of days from initial infection in these cases compared with those with failed sequences. A total of 122 (98%) patients showed evidence of reinfection; 45 of these patients had sequence-validated reinfection and 77 had inferred reinfections (later sequencing showed a clade that was not circulating when the patient was initially infected). Of the 45 patients with sequence-validated reinfections, 43 (96%) had reinfections that were caused by the Omicron variant, 41 (91%) were symptomatic, 32 (71%) were vaccinated prior to the second infection, 6 (13%) were immunosuppressed, and only 2 (4%) were hospitalized.CONCLUSIONSequence-validated reinfections increased with the Omicron surge but were generally associated with mild infections.FUNDINGFunding was provided by the Johns Hopkins Center of Excellence in Influenza Research and Surveillance (HHSN272201400007C), CDC (75D30121C11061), Johns Hopkins University President's Fund Research Response, Johns Hopkins Department of Pathology, and the Maryland Department of Health.


Subject(s)
COVID-19 , Reinfection , Humans , SARS-CoV-2/genetics , Genome, Viral
6.
J Clin Virol ; 153: 105215, 2022 08.
Article in English | MEDLINE | ID: covidwho-1945517

ABSTRACT

BACKGROUND: In December 2021, the SARS-CoV-2 Omicron variant displaced the Delta variant and caused an unprecedented spike in the numbers of COVID-19 cases. This study reports the positivity rates of circulating non-SARS-CoV-2 respiratory viruses and evaluates coinfections of these viruses with SARS-CoV-2 during the Omicron surge. METHODS: Data from the multiplex respiratory panels used for diagnosis at the Johns Hopkins Microbiology Laboratory were used to assess positivity rates and respiratory virus coinfections in the time frame between November 2021 and February 2022. Clinical presentations and outcomes were assessed in the cohort of 46 patients who had SARS-CoV-2 coinfections with other respiratory viruses. RESULTS: Between November 2021 and February 2022, the high positivity of SARS-CoV-2 outcompeted enterovirus/rhinovirus and other circulating respiratory viruses and was associated with a notable decrease in influenza A infections. Coinfections represented 2.3% of the samples tested by the extended multiplex respiratory panel. SARS-COV-2 coinfections represented 25% of the coinfections in this time frame and were mostly SARS-COV-2/enterovirus/rhinovirus. Of the SARS-CoV-2 coinfection cohort, 3 patients were hospitalized and were coinfected with influenza-A (2) or RSV (1). Cough and shortness of breath were the most frequent symptoms (29%) followed by fever (28%). CONCLUSIONS: The SARS-CoV-2 Omicron surge was associated with a change in the circulation of other respiratory viruses. Coinfections were most prevalent with viruses that showed the highest positivity in this time frame.


Subject(s)
COVID-19 , Coinfection , Enterovirus Infections , Influenza, Human , Respiratory Tract Infections , Viruses , Humans , Respiratory Tract Infections/epidemiology , Rhinovirus , SARS-CoV-2 , Viruses/genetics
7.
Open Forum Infect Dis ; 9(6): ofac064, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1948416

ABSTRACT

Profoundly B-cell-depleted patients can have prolonged severe acute respiratory syndrome coronavirus 2 infections with evidence of active viral replication, due to inability to mount an adequate humoral response to clear the virus. We present 3 B-cell-depleted patients with prolonged coronavirus disease 2019 infection who were successfully treated with a combination of casirivimab/imdevimab and remdesivir.

8.
Graefes Arch Clin Exp Ophthalmol ; 260(8): 2585-2590, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1941624

ABSTRACT

PURPOSE: Increased ophthalmology-specific risk of novel coronavirus 2019 (SARS-CoV-2) transmission is well-established, increasing the fear of infection and causing associated decreased rates of procedures known to save vision. However, the potential transmission from exposure to clinic instrumentation is unknown, including which additional pathogens may be spreading in this context. This study seeks to fill this gap by characterizing the microbiota of instrumentation in ophthalmology clinics during the COVID-19 pandemic and identifying potential sources of pathogenic spread encountered by patients and healthcare workers. METHODS: Thirty-three samples were captured using standard cultures and media. Ten positive and negative controls were used to confirm proper technique. Descriptive statistics were calculated for all samples. Samples were collected from the retina (N = 17), glaucoma (N = 6), cornea (N = 6), and resident (N = 4) clinics with rigorous disinfection standards at a tertiary academic medical center. Standard media cultures and/or polymerase chain reaction (PCR) was performed for each sample. RESULTS: From 33 samples, more than half (17/33, 51.5%) yielded bacterial growth. Using two different molecular methods, three samples (3/33, 9%) tested positive for SARS-CoV-2 (cycle thresholds 36.48, 37.14, and 37.83). There was no significant difference in bacterial growth (95% confidence interval [95% CI]: - 0.644-0.358, p = 0.076) among different clinics (retina, glaucoma, cornea, resident). Staphylococcus (S.) epidermidis grew most frequently (12/35, 34%), followed by S. capitis (7/35, 20%), Micrococcus luteus (2/35, 5.7%), Corynebacterium tuberculostearicum (2/35, 5.7%), and Cutibacterium ([C.], Propionibacterium) acnes (2/35, 5.7%). C. acnes growth was more frequent with imaging device forehead rests (2/7, 28.6%) than other surfaces (0/26, 0%, 95% CI: 0.019-0.619, p = 0.040). No samples isolated fungus or adenovirus. CONCLUSIONS: Most samples across subspecialty clinic instrumentation grew bacteria, and several tested positive for SARS-CoV-2. Many isolated pathogens have been implicated in causing infections such as endophthalmitis, conjunctivitis, uveitis, and keratitis. The clinical implications of the ophthalmology microbiome for transmitting nosocomial infections warrant optimization of disinfection practices, strategies for mitigating spread, and additional study beyond the pandemic.


Subject(s)
COVID-19 , Glaucoma , Microbiota , Ophthalmology , COVID-19/epidemiology , Humans , Pandemics , SARS-CoV-2
9.
Open Forum Infect Dis ; 9(7): ofac192, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1922309

ABSTRACT

Background: The global effort to vaccinate people against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) during an ongoing pandemic has raised questions about how vaccine breakthrough infections compare with infections in immunologically naive individuals and the potential for vaccinated individuals to transmit the virus. Methods: We examined viral dynamics and infectious virus shedding through daily longitudinal sampling in 23 adults infected with SARS-CoV-2 at varying stages of vaccination, including 6 fully vaccinated individuals. Results: The durations of both infectious virus shedding and symptoms were significantly reduced in vaccinated individuals compared with unvaccinated individuals. We also observed that breakthrough infections are associated with strong tissue compartmentalization and are only detectable in saliva in some cases. Conclusions: Vaccination shortens the duration of time of high transmission potential, minimizes symptom duration, and may restrict tissue dissemination.

10.
J Clin Microbiol ; 60(7): e0018722, 2022 07 20.
Article in English | MEDLINE | ID: covidwho-1901919

ABSTRACT

COVID-19 has brought unprecedented attention to the crucial role of diagnostics in pandemic control. We compared severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) test performance by sample type and modality in close contacts of SARS-CoV-2 cases. Close contacts of SARS-CoV-2-positive individuals were enrolled after informed consent. Clinician-collected nasopharyngeal (NP) swabs in viral transport media (VTM) were tested with a routine clinical reference nucleic acid test (NAT) and PerkinElmer real-time reverse transcription-PCR (RT-PCR) assay; positive samples were tested for infectivity using a VeroE6TMPRSS2 cell culture model. Self-collected passive drool was also tested using the PerkinElmer RT-PCR assay. For the first 4 months of study, midturbinate swabs were tested using the BD Veritor rapid antigen test. Between 17 November 2020 and 1 October 2021, 235 close contacts of SARS-CoV-2 cases were recruited, including 95 with symptoms (82% symptomatic for ≤5 days) and 140 asymptomatic individuals. Reference NATs were positive for 53 (22.6%) participants; 24/50 (48%) were culture positive. PerkinElmer testing of NP and saliva samples identified an additional 28 (11.9%) SARS-CoV-2 cases who tested negative by reference NAT. Antigen tests performed for 99 close contacts showed 83% positive percent agreement (PPA) with reference NAT among early symptomatic persons, but 18% PPA in others; antigen tests in 8 of 11 (72.7%) culture-positive participants were positive. Contacts of SARS-CoV-2 cases may be falsely negative early after contact, but more sensitive platforms may identify these cases. Repeat or serial SARS-CoV-2 testing with both antigen and molecular assays may be warranted for individuals with high pretest probability for infection.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19 Testing , Humans , Pandemics , Sensitivity and Specificity
11.
Microbiol Spectr ; 10(3): e0102522, 2022 Jun 29.
Article in English | MEDLINE | ID: covidwho-1865143

ABSTRACT

Ensuring SARS-CoV-2 diagnostics that can reliably detect emerging variants has been an ongoing challenge. Due to the rapid spread of the Omicron variant, point-of-care (POC) antigen tests have become more widely used. This study aimed at (i) comparing the analytical sensitivity (LOD) of 4 POC antigen assays, BD Veritor, Abbott BinaxNow, Orasure InteliSwab and Quidel QuickVue, for the Omicron versus the Delta variant and (ii) verifying the reproducible detection of Omicron by the 4 antigen assays. The LOD for all four assays were evaluated using Omicron and Delta virus stocks quantified for infectivity and genome copies. The four assays detected all replicates of Omicron and Delta dilutions at 104 and 105 TCID50/mL, respectively. We quantified both viral stocks using droplet digital PCR (ddPCR), which revealed that the Omicron stock had equivalent copies of the N gene to Delta at a one log lower infectious virus. The Abbott BinaxNow and Orasure InteliSwab had the highest analytical sensitivity for Omicron while the Orasure InteliSwab and the Quidel QuickVue had the highest analytical sensitivity for Delta. When 14 SARS-CoV-2 real-time PCR positive nasal/nasopharyngeal swab samples (12 Omicron and 2 Delta, mean Ct = 19.1), were tested by the four assays, only the QuickVue detected all samples. Antigen test positivity correlated with recovery of infectious virus on cell culture in 9 out of 13 tested specimens from symptomatic, asymptomatic, unvaccinated, and vaccinated individuals. Although our study confirms the reduced analytical sensitivity of antigen testing compared to molecular methods, the Omicron variant was detectable by the four evaluated rapid antigen tests. IMPORTANCE In the manuscript, we report an evaluation of the capability of 4 point of care (POC) antigen assays, the BD Veritor, Abbott BinaxNow, Orasure InteliSwab and Quidel QuickVue to detect the Omicron variant of SARS-CoV-2, and we compared their analytical sensitivity for Omicron versus Delta. In this analysis we found that all four assays detected Omicron and Delta at 104 and 105 TCID50/mL, respectively. We further quantified the viral stocks used by droplet digital (ddPCR) and found that the Omicron stock had equivalent copies of the N gene to Delta at a one log lower infectious virus titer and that an increased RNA to infectious virus ratio may be contributing to discrepancies in limit of detection in Omicron compared to Delta. We evaluated 14 SARS-CoV-2 real-time PCR positive nasal/nasopharyngeal swab samples (12 Omicron and 2 Delta), with an average cycle threshold value of 19.1, and only the QuickVue showed 100% agreement.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , Humans , Point-of-Care Systems , SARS-CoV-2/genetics , Sensitivity and Specificity
12.
J Clin Virol ; 150-151: 105164, 2022 06.
Article in English | MEDLINE | ID: covidwho-1851457

ABSTRACT

BACKGROUND: December 2021 witnessed an unprecedented increase in SARS-CoV-2 infections in addition to the circulation of influenza A and respiratory syncytial viruses (RSV). Due to increased testing demands for SARS-CoV-2, influenza, and RSV associated with the overall increase in symptomatic respiratory infections, there is an urgent need for multiplex, automated, and high throughput assays in the diagnostic laboratories. METHODS: We compared the performance of the NeuMoDx™ Flu A-B/RSV/SARS-CoV-2 Vantage and the Alinity m Resp-4-Plex to the standard of care influenza A, B, RSV, and SARS-CoV-2 assays used at the Johns Hopkins Microbiology Laboratory. A total of 181 remnant nasopharyngeal swab (NPS) specimens positive for influenza A (n = 29), influenza B (n = 34), RSV (n = 40), SARS-CoV-2 (n = 33), influenza A/RSV (n = 1), and negatives (n = 44) were tested by either or both assays. RESULTS: Both the NeuMoDx™ Flu A-B/RSV/SARS-CoV-2 Vantage and the Alinity m Resp-4-Plex assays showed 100% total agreement for all the tested analytes. For samples with available cycle threshold (Ct) values, comparable ranges were noted for all targets between the two assays and to the standard of care Ct values as well. CONCLUSION: The NeuMoDx™ Flu A-B/RSV/SARS-CoV-2 Vantage and the Alinity m Resp-4-Plex assays showed high sensitivity and accuracy for all the analytes included in both tests. Implementing these assays will assist the diagnostic laboratories with the surge of testing during the 2021-2022 influenza season.


Subject(s)
COVID-19 , Influenza, Human , Respiratory Syncytial Virus Infections , COVID-19/diagnosis , Humans , Influenza B virus , Influenza, Human/diagnosis , Nasopharynx , Respiratory Syncytial Virus Infections/diagnosis , Respiratory Syncytial Viruses , SARS-CoV-2 , Sensitivity and Specificity
13.
Front Cell Infect Microbiol ; 12: 809407, 2022.
Article in English | MEDLINE | ID: covidwho-1817934

ABSTRACT

Large-scale SARS-CoV-2 molecular testing coupled with whole genome sequencing in the diagnostic laboratories is instrumental for real-time genomic surveillance. The extensive genomic, laboratory, and clinical data provide a valuable resource for understanding cases of reinfection versus prolonged RNA shedding and protracted infections. In this study, data from a total of 22,292 clinical specimens, positive by SARS-CoV-2 molecular diagnosis at Johns Hopkins clinical virology laboratory between March 11th 2020 to September 23rd 2021, were used to identify patients with two or more positive results. A total of 3,650 samples collected from 1,529 patients who had between 2 and 20 positive results were identified in a time frame that extended up to 403 days from the first positive. Cycle threshold values (Ct) were available for 1,622 samples, the median of which was over 30 by 11 days after the first positive. Extended recovery of infectious virus on cell culture was notable for up to 70 days after the first positive in immunocompromised patients. Whole genome sequencing data generated as a part of our SARS-CoV-2 genomic surveillance was available for 1,027 samples from patients that had multiple positive tests. Positive samples collected more than 10 days after initial positive with high quality sequences (coverage >90% and mean depth >100), were more likely to be from unvaccinated, or immunosuppressed patients. Reinfections with viral variants of concern were found in 3 patients more than 130 days from prior infections with a different viral clade. In 75 patients that had 2 or more high quality sequences, the acquisition of more substitutions or deletions was associated with lack of vaccination and longer time between the recovered viruses. Our study highlights the value of integrating genomic, laboratory, and clinical data for understanding the biology of SARS-CoV-2 as well as for setting a precedent for future epidemics and pandemics.


Subject(s)
COVID-19 , Reinfection , COVID-19/diagnosis , Genome, Viral/genetics , Genomics , Humans , Molecular Diagnostic Techniques , RNA, Viral/genetics , SARS-CoV-2/genetics
14.
Nat Microbiol ; 7(5): 640-652, 2022 05.
Article in English | MEDLINE | ID: covidwho-1815547

ABSTRACT

The dynamics of SARS-CoV-2 replication and shedding in humans remain poorly understood. We captured the dynamics of infectious virus and viral RNA shedding during acute infection through daily longitudinal sampling of 60 individuals for up to 14 days. By fitting mechanistic models, we directly estimated viral expansion and clearance rates and overall infectiousness for each individual. Significant person-to-person variation in infectious virus shedding suggests that individual-level heterogeneity in viral dynamics contributes to 'superspreading'. Viral genome loads often peaked days earlier in saliva than in nasal swabs, indicating strong tissue compartmentalization and suggesting that saliva may serve as a superior sampling site for early detection of infection. Viral loads and clearance kinetics of Alpha (B.1.1.7) and previously circulating non-variant-of-concern viruses were mostly indistinguishable, indicating that the enhanced transmissibility of this variant cannot be explained simply by higher viral loads or delayed clearance. These results provide a high-resolution portrait of SARS-CoV-2 infection dynamics and implicate individual-level heterogeneity in infectiousness in superspreading.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Viral Load , Virus Shedding
15.
EBioMedicine ; 79: 104008, 2022 May.
Article in English | MEDLINE | ID: covidwho-1796982

ABSTRACT

BACKGROUND: The increase in SARS-CoV-2 infections in December 2021 was driven primarily by the Omicron variant, which largely displaced the Delta over a three-week span. Outcomes from infection with Omicron remain uncertain. We evaluated whether clinical outcomes and viral loads differed between Delta and Omicron infections during the period when both variants were co-circulating. METHODS: In this retrospective observational cohort study, remnant clinical specimens, positive for SARS-CoV-2 after standard of care testing at the Johns Hopkins Microbiology Laboratory, between the last week of November and the end of December 2021, were used for whole viral genome sequencing. Cycle threshold values (Ct) for viral RNA, the presence of infectious virus, and levels of respiratory IgG were measured, and clinical outcomes were obtained. Differences in each measure were compared between variants stratified by vaccination status. FINDINGS: The Omicron variant displaced Delta during the study period and constituted 95% of the circulating lineages by the end of December 2021. Patients with Omicron infections (N = 1,119) were more likely to be vaccinated compared to patients with Delta (N = 908), but were less likely to be admitted (0.33 CI 0.21-0.52), require ICU level care (0.38 CI 0.17-0.87), or succumb to infection (0.26 CI 0.06-1.02) regardless of vaccination status. There was no statistically significant difference in Ct values based on the lineage regardless of the vaccination status. Recovery of infectious virus in cell culture was reduced in boosted patients compared to fully vaccinated without a booster and unvaccinated when infected with the Delta lineage. However, in patients with Omicron infections, recovery of infectious virus was not affected by vaccination. INTERPRETATION: Compared to Delta, Omicron was more likely to cause breakthrough infections of vaccinated individuals, yet admissions were less frequent. Admitted patients might develop severe disease comparable to Delta. Efforts for reducing Omicron transmission are required as, though the admission risk might be lower, the increased numbers of infections cause large numbers of hospitalizations. FUNDING: NIH/NIAID Center of Excellence in Influenza Research and Surveillance contract HHS N2772201400007C, Johns Hopkins University, Maryland department of health, Centers for Disease Control and Prevention contract 75D30121C11061, and The Modeling Infectious Diseases in Healthcare Network (MInD) under awards U01CK000589.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Hospitalization , Hospitals , Humans , Retrospective Studies , SARS-CoV-2/genetics , Viral Load
16.
Advanced materials technologies ; 2022.
Article in English | EuropePMC | ID: covidwho-1790021

ABSTRACT

The rise of highly transmissible SARS‐CoV‐2 variants brings new challenges and concerns with vaccine efficacy, diagnostic sensitivity, and public health responses to end the pandemic. Widespread detection of variants is critical to inform policy decisions to mitigate further spread, and postpandemic multiplexed screening of respiratory viruses will be necessary to properly manage patients presenting with similar respiratory symptoms. In this work, a portable, magnetofluidic cartridge platform for automated polymerase chain reaction testing in <30 min is developed. Cartridges are designed for multiplexed detection of SARS‐CoV‐2 with either identification of variant mutations or screening for Influenza A and B. Moreover, the platform can perform identification of B.1.1.7 and B.1.351 variants and the multiplexed SARS‐CoV‐2/Influenza assay using archived clinical nasopharyngeal swab eluates and saliva samples. This work illustrates a path toward affordable and immediate testing with potential to aid surveillance of viral variants and inform patient treatment. A portable instrument integrates sample preparation with direct coupling to multiplexed polymerase chain reaction assays in a single magnetofluidic cartridge. This platform demonstrates identification of SARS‐CoV‐2 in patient swab and saliva samples with simultaneous screening for variants of concern or influenza A and B in less than 30 min.

18.
JCI Insight ; 7(10)2022 05 23.
Article in English | MEDLINE | ID: covidwho-1779508

ABSTRACT

BackgroundBreakthrough SARS-CoV-2 infections in vaccinated individuals have been previously associated with suboptimal humoral immunity. However, less is known about breakthrough infections with the Omicron variant.MethodsWe analyzed SARS-CoV-2-specific antibody and cellular responses in healthy vaccine recipients who experienced breakthrough infections a median of 50 days after receiving a booster mRNA vaccine with an ACE2 binding inhibition assay and an ELISpot assay, respectively.ResultsWe found that high levels of antibodies inhibited vaccine strain spike protein binding to ACE2 but that lower levels inhibited Omicron variant spike protein binding to ACE2 in 4 boosted vaccine recipients prior to infection. The levels of antibodies that inhibited vaccine strain and Omicron spike protein binding after breakthrough in 18 boosted vaccine recipients were similar to levels seen in COVID-19-negative boosted vaccine recipients. In contrast, boosted vaccine recipients had significantly stronger T cell responses to both vaccine strain and Omicron variant spike proteins at the time of breakthrough.ConclusionOur data suggest that breakthrough infections with the Omicron variant can occur despite robust immune responses to the vaccine strain spike protein.FundingThis work was supported by the Johns Hopkins COVID-19 Vaccine-related Research Fund and by funds from the National Institute of Allergy and Infectious Disease intramural program as well as awards from the National Cancer Institute (U54CA260491) and the National Institutes of Allergy and Infectious Disease (K08AI156021 and U01AI138897).


Subject(s)
COVID-19 , Communicable Diseases , Hypersensitivity , Angiotensin-Converting Enzyme 2 , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Immunity , SARS-CoV-2 , Vaccines, Synthetic , mRNA Vaccines
19.
J Clin Virol ; 150-151: 105151, 2022 06.
Article in English | MEDLINE | ID: covidwho-1773460

ABSTRACT

INTRODUCTION: COVID-19 large scale immunization in the US has been associated with breakthrough positive molecular testing. In this study, we investigated whether a positive test is associated with a high anti-viral IgG, specific viral variant, recovery of infectious virus, or symptomatic infection during an early phase after vaccination rollout. METHODS: We identified 133 SARS-CoV-2 positive patients who had received two doses of either Pfizer-BioNTech (BNT162b2) or Moderna (mRNA-1273) vaccines, the 2nd of which was received between January and April of 2021. The positive samples were collected between January and May of 2021. Samples were sequenced to characterize the whole genome and Spike protein changes and cycle thresholds that reflect viral loads were determined using a single molecular assay. Respiratory SARS-CoV-2 IgG antibodies were examined using ELISA and specimens were grown on cell culture to assess the recovery of infectious virus as compared to a control unvaccinated cohort. RESULTS: Of 133 specimens, 24 failed sequencing and yielded a negative or very low viral load on the repeat PCR. Of 109 specimens that were used for further genome analysis, 68 (62.4%) were from symptomatic infections, 11 (10.1%) were admitted for COVID-19, and 2 (1.8%) required ICU admission with no associated mortality. The predominant virus variant was the Alpha (B.1.1.7), however a significant association between lineage B.1.526 and amino acid change S: E484K with positives after vaccination was noted. A significant reduction of the recovery of infectious virus on cell culture was accompanied by an increase in localized IgG levels in respiratory samples of vaccinated individuals. CONCLUSIONS: Vaccination reduces the recovery of infectious virus in breakthrough infections caused primarily by the Alpha variant accompanied by an increase in upper respiratory tract IgG levels.


Subject(s)
COVID-19 , Antibodies, Viral , Antiviral Agents , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Immunoglobulin G , RNA, Messenger , Respiratory System , SARS-CoV-2 , Vaccination
20.
Open Forum Infect Dis ; 9(3): ofab618, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1758820

ABSTRACT

BACKGROUND: Our understanding of the cocirculation of infrequently targeted respiratory pathogens and their contribution to symptoms during the coronavirus disease 2019 (COVID-19) pandemic is currently limited. This research aims at (1) understanding the epidemiology of respiratory pathogens since the start of the pandemic, (2) assessing the contribution of non-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)/influenza/respiratory syncytial virus (RSV) respiratory pathogens to symptoms, and (3) evaluating coinfection rates in SARS-CoV-2-positive patients, both vaccinated and unvaccinated. METHODS: Retrospective analysis of respiratory pathogens identified by the Johns Hopkins Diagnostic Laboratory between December 2019 and October 2021 was performed. In addition, we assessed the contribution of respiratory pathogens other than SARS-CoV-2 to symptomatic disease by retesting 2 cohorts of specimens that were (1) collected from symptomatic patients and (2) received limited respiratory pathogen testing. The first cohort was patients who tested negative by the standard-of-care SARS-CoV-2/influenza/RSV testing. The second was a cohort of SARS-CoV-2-positive, symptomatic, fully COVID-19 immunized and unimmunized patients. RESULTS: Between December 2019 and October 2021, a total of 11 806, 62 829, and 579 666 specimens were tested for an extended respiratory panel, influenza/RSV with or without SARS-CoV-2 panel, or SARS-CoV-2, respectively. Positivity rates of different targets differed between different months and were impacted by the COVID-19 pandemic. The SARS-CoV-2-negative cohort had 8.5% positivity for other respiratory pathogens that included primarily enterovirus/rhinovirus (5.8%). In the SARS-CoV-2-positive cohort, no other respiratory pathogens were detected. CONCLUSIONS: The COVID-19 pandemic impacted the circulation of certain respiratory pathogens. Other respiratory viral pathogens were associated with symptomatic infections; however, coinfections with SARS-CoV-2 were highly uncommon.

SELECTION OF CITATIONS
SEARCH DETAIL