ABSTRACT
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection alters the immunological profiles of natural killer (NK) cells. However, whether NK antiviral functions are impaired during severe coronavirus disease 2019 (COVID-19) and what host factors modulate these functions remain unclear. We found that NK cells from hospitalized COVID-19 patients degranulate less against SARS-CoV-2 antigen-expressing cells (in direct cytolytic and antibody-dependent cell cytotoxicity [ADCC] assays) than NK cells from mild COVID-19 patients or negative controls. The lower NK degranulation was associated with higher plasma levels of SARS-CoV-2 nucleocapsid antigen. Phenotypic and functional analyses showed that NK cells expressing the glyco-immune checkpoint Siglec-9 elicited higher ADCC than Siglec-9- NK cells. Consistently, Siglec-9+ NK cells exhibit an activated and mature phenotype with higher expression of CD16 (FcγRIII; mediator of ADCC), CD57 (maturation marker), and NKG2C (activating receptor), along with lower expression of the inhibitory receptor NKG2A, than Siglec-9- CD56dim NK cells. These data are consistent with the concept that the NK cell subpopulation expressing Siglec-9 is highly activated and cytotoxic. However, the Siglec-9 molecule itself is an inhibitory receptor that restrains NK cytotoxicity during cancer and other viral infections. Indeed, blocking Siglec-9 significantly enhanced the ADCC-mediated NK degranulation and lysis of SARS-CoV-2-antigen-positive target cells. These data support a model in which the Siglec-9+ CD56dim NK subpopulation is cytotoxic even while it is restrained by the inhibitory effects of Siglec-9. Alleviating the Siglec-9-mediated restriction on NK cytotoxicity may further improve NK immune surveillance and presents an opportunity to develop novel immunotherapeutic tools against SARS-CoV-2 infected cells. IMPORTANCE One mechanism that cancer cells use to evade natural killer cell immune surveillance is by expressing high levels of sialoglycans, which bind to Siglec-9, a glyco-immune checkpoint molecule on NK cells. This binding inhibits NK cell cytotoxicity. Several viruses, such as hepatitis B virus (HBV) and HIV, also use a similar mechanism to evade NK surveillance. We found that NK cells from SARS-CoV-2-hospitalized patients are less able to function against cells expressing SARS-CoV-2 Spike protein than NK cells from SARS-CoV-2 mild patients or uninfected controls. We also found that the cytotoxicity of the Siglec-9+ NK subpopulation is indeed restrained by the inhibitory nature of the Siglec-9 molecule and that blocking Siglec-9 can enhance the ability of NK cells to target cells expressing SARS-CoV-2 antigens. Our results suggest that a targetable glyco-immune checkpoint mechanism, Siglec-9/sialoglycan interaction, may contribute to the ability of SARS-CoV-2 to evade NK immune surveillance.
Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Antibodies/metabolism , Antibody-Dependent Cell Cytotoxicity , COVID-19/metabolism , Killer Cells, Natural , Sialic Acid Binding Immunoglobulin-like Lectins/metabolismSubject(s)
COVID-19 , NF-kappa B , Humans , NF-kappa B/metabolism , SARS-CoV-2 , Signal TransductionABSTRACT
In vaccine clinical trials, both binding antibody (bAb) levels and neutralization antibody (nAb) titers have been shown to be correlates of SARS-CoV-2 vaccine efficacy. We report a strong correlation bAb and nAb responses against the SARS-CoV-2 Omicron (BA.1) variant in infection-naïve and previously infected (convalescent) individuals after one and two doses of BNT162b2 vaccination. The vaccine-induced bAb levels against Omicron were significantly lower compared to previous variants of concern in both infection-naive and convalescent individuals, with the convalescent individuals showing significantly higher bAb compared to the naïve individuals at all timepoints. The finding that bAb highly correlated with nAb provides evidence for utilizing binding antibody assays as a surrogate for neutralizing antibody assays. Our data also revealed that after full vaccination, a higher percentage of individuals had undetectable Omicron nAb (58.6% in naive individuals, 7.4% in convalescent individuals) compared to the percentage of individuals who had negative Omicron bAb (0% in naive individuals, 0% in convalescent individuals). The discordance between bAb and nAb activities and the high degree of immune escape by Omicron may explain the high frequency of Omicron infections after vaccination.
ABSTRACT
Previous reports demonstrated that severe acute respiratory syndrome coronavirus (SARS-CoV-2) binding immunoglobulin G levels did not increase significantly between the first and second doses of the BNT162b2 vaccine in previously infected individuals. We tested neutralizing antibodies (nAbs) against SARS-CoV-2 Delta and Omicron variants after the first and second doses of this vaccine in infection-naive and previously infected individuals. Delta, but not Omicron, nAb titers significantly increased from the first to the second dose in both groups of individuals. Importantly, we found that Omicron nAb titers were much lower than Delta nAb titers and that even after 2 doses of vaccine, 17 of 29 individuals in the infection-naive group and 2 of 27 in the previously infected group did not have detectable Omicron nAb titers. Infection history alone did not adequately predict whether a second dose resulted in adequate nAb. For future variants of concern, the discussion on the optimal number of vaccine doses should be based on studies testing for nAb against the specific variant.
Subject(s)
COVID-19 , Viral Vaccines , Antibodies, Neutralizing , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , Humans , Immunoglobulin G , Neutralization Tests , SARS-CoV-2ABSTRACT
Long COVID, a type of post-acute sequelae of SARS-CoV-2 (PASC), has been associated with sustained elevated levels of immune activation and inflammation. However, the mechanisms that drive this inflammation remain unknown. Inflammation during acute coronavirus disease 2019 could be exacerbated by microbial translocation (from the gut and/or lung) to blood. Whether microbial translocation contributes to inflammation during PASC is unknown. We did not observe a significant elevation in plasma markers of bacterial translocation during PASC. However, we observed higher levels of fungal translocation - measured as ß-glucan, a fungal cell wall polysaccharide - in the plasma of individuals experiencing PASC compared with those without PASC or SARS-CoV-2-negative controls. The higher ß-glucan correlated with higher inflammation and elevated levels of host metabolites involved in activating N-methyl-d-aspartate receptors (such as metabolites within the tryptophan catabolism pathway) with established neurotoxic properties. Mechanistically, ß-glucan can directly induce inflammation by binding to myeloid cells (via Dectin-1) and activating Syk/NF-κB signaling. Using a Dectin-1/NF-κB reporter model, we found that plasma from individuals experiencing PASC induced higher NF-κB signaling compared with plasma from negative controls. This higher NF-κB signaling was abrogated by piceatannol (Syk inhibitor). These data suggest a potential targetable mechanism linking fungal translocation and inflammation during PASC.
Subject(s)
COVID-19 , beta-Glucans , COVID-19/complications , Humans , Inflammation , Lectins, C-Type/metabolism , NF-kappa B/metabolism , SARS-CoV-2 , Syk Kinase , Post-Acute COVID-19 SyndromeABSTRACT
Beyond neutralization, antibodies binding to their Fc receptors elicit several innate immune functions including antibody-dependent complement deposition (ADCD), antibody-dependent cell-mediated phagocytosis (ADCP), and antibody-dependent cell-mediated cytotoxicity (ADCC). These functions are beneficial, as they contribute to pathogen clearance; however, they also can induce inflammation. We tested the possibility that qualitative differences in SARS-CoV-2-specific antibody-mediated innate immune functions contribute to coronavirus disease 2019 (COVID-19) severity. We found that anti-S1 and anti-RBD antibodies from hospitalized COVID-19 patients elicited higher ADCD but lower ADCP compared to antibodies from nonhospitalized COVID-19 patients. Consistently, higher ADCD was associated with higher systemic inflammation, whereas higher ADCP was associated with lower systemic inflammation during COVID-19. Our study points to qualitative, differential features of anti-SARS-CoV-2 specific antibodies as potential contributors to COVID-19 severity. Understanding these qualitative features of natural and vaccine-induced antibodies will be important in achieving optimal efficacy and safety of SARS-CoV-2 vaccines and/or COVID-19 therapeutics.IMPORTANCE A state of hyperinflammation and increased complement activation has been associated with coronavirus disease 2019 (COVID-19) severity. However, the pathophysiological mechanisms that contribute to this phenomenon remain mostly unknown. Our data point to a qualitative, rather than quantitative, difference in SARS-CoV-2-specific antibodies' ability to elicit Fc-mediated innate immune functions as a potential contributor to COVID-19 severity and associated inflammation. These data highlight the need for further studies to understand these qualitative features and their potential contribution to COVID-19 severity. This understanding could be essential to develop antibody-based COVID-19 therapeutics and SARS-CoV-2 vaccines with an optimal balance between efficacy and safety.