Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
2022 IST-Africa Conference, IST-Africa 2022 ; 2022.
Article in English | Scopus | ID: covidwho-2030545

ABSTRACT

The COVID-19 pandemic has been a challenge for the past two years, and continues to be so, with the virus showing more mutations with time. The use of face masks in public spaces has been proven to be a precautionary measure to minimize the spread of the Coronavirus, which is the causative agent of the disease. However, enforcing the proper wearing of masks, particularly in environments like schools is a daunting task. This study develops a live video camera application that detects proper wearing of face masks by students in schools using a machine learning algorithm. On detecting an improper mask-wearing face, or a face with no mask, the system displays a red message 'No Mask', while a face with a mask properly worn is flagged with a green message 'Mask'. To enforce the proper wearing of masks, on detecting persons improperly wearing masks, the system automatically sends an alert WhatsApp message to the classroom manager (teacher) to take appropriate action. This application would help ease the workload of teachers who have the task of ensuring a quality teaching and learning environment, at the same time safeguarding the health of learners in this COVID-19 era. © 2022 IST-Africa Institute and Authors.

2.
Tegally, H.; San, J. E.; Cotten, M.; Moir, M.; Tegomoh, B.; Mboowa, G.; Martin, D. P.; Baxter, C.; Lambisia, A. W.; Diallo, A.; Amoako, D. G.; Diagne, M. M.; Sisay, A.; Zekri, A. N.; Gueye, A. S.; Sangare, A. K.; Ouedraogo, A. S.; Sow, A.; Musa, A. O.; Sesay, A. K.; Abias, A. G.; Elzagheid, A. I.; Lagare, A.; Kemi, A. S.; Abar, A. E.; Johnson, A. A.; Fowotade, A.; Oluwapelumi, A. O.; Amuri, A. A.; Juru, A.; Kandeil, A.; Mostafa, A.; Rebai, A.; Sayed, A.; Kazeem, A.; Balde, A.; Christoffels, A.; Trotter, A. J.; Campbell, A.; Keita, A. K.; Kone, A.; Bouzid, A.; Souissi, A.; Agweyu, A.; Naguib, A.; Gutierrez, A. V.; Nkeshimana, A.; Page, A. J.; Yadouleton, A.; Vinze, A.; Happi, A. N.; Chouikha, A.; Iranzadeh, A.; Maharaj, A.; Batchi-Bouyou, A. L.; Ismail, A.; Sylverken, A. A.; Goba, A.; Femi, A.; Sijuwola, A. E.; Marycelin, B.; Salako, B. L.; Oderinde, B. S.; Bolajoko, B.; Diarra, B.; Herring, B. L.; Tsofa, B.; Lekana-Douki, B.; Mvula, B.; Njanpop-Lafourcade, B. M.; Marondera, B. T.; Khaireh, B. A.; Kouriba, B.; Adu, B.; Pool, B.; McInnis, B.; Brook, C.; Williamson, C.; Nduwimana, C.; Anscombe, C.; Pratt, C. B.; Scheepers, C.; Akoua-Koffi, C. G.; Agoti, C. N.; Mapanguy, C. M.; Loucoubar, C.; Onwuamah, C. K.; Ihekweazu, C.; Malaka, C. N.; Peyrefitte, C.; Grace, C.; Omoruyi, C. E.; Rafaï, C. D.; Morang'a, C. M.; Erameh, C.; Lule, D. B.; Bridges, D. J.; Mukadi-Bamuleka, D.; Park, D.; Rasmussen, D. A.; Baker, D.; Nokes, D. J.; Ssemwanga, D.; Tshiabuila, D.; Amuzu, D. S. Y.; Goedhals, D.; Grant, D. S.; Omuoyo, D. O.; Maruapula, D.; Wanjohi, D. W.; Foster-Nyarko, E.; Lusamaki, E. K.; Simulundu, E.; Ong'era, E. M.; Ngabana, E. N.; Abworo, E. O.; Otieno, E.; Shumba, E.; Barasa, E.; Ahmed, E. B.; Ahmed, E. A.; Lokilo, E.; Mukantwari, E.; Philomena, E.; Belarbi, E.; Simon-Loriere, E.; Anoh, E. A.; Manuel, E.; Leendertz, F.; Taweh, F. M.; Wasfi, F.; Abdelmoula, F.; Takawira, F. T.; Derrar, F.; Ajogbasile, F. V.; Treurnicht, F.; Onikepe, F.; Ntoumi, F.; Muyembe, F. M.; Ragomzingba, F. E. Z.; Dratibi, F. A.; Iyanu, F. A.; Mbunsu, G. K.; Thilliez, G.; Kay, G. L.; Akpede, G. O.; van Zyl, G. U.; Awandare, G. A.; Kpeli, G. S.; Schubert, G.; Maphalala, G. P.; Ranaivoson, H. C.; Omunakwe, H. E.; Onywera, H.; Abe, H.; Karray, H.; Nansumba, H.; Triki, H.; Kadjo, H. A. A.; Elgahzaly, H.; Gumbo, H.; Mathieu, H.; Kavunga-Membo, H.; Smeti, I.; Olawoye, I. B.; Adetifa, I. M. O.; Odia, I.; Ben Boubaker, I. B.; Mohammad, I. A.; Ssewanyana, I.; Wurie, I.; Konstantinus, I. S.; Halatoko, J. W. A.; Ayei, J.; Sonoo, J.; Makangara, J. C.; Tamfum, J. M.; Heraud, J. M.; Shaffer, J. G.; Giandhari, J.; Musyoki, J.; Nkurunziza, J.; Uwanibe, J. N.; Bhiman, J. N.; Yasuda, J.; Morais, J.; Kiconco, J.; Sandi, J. D.; Huddleston, J.; Odoom, J. K.; Morobe, J. M.; Gyapong, J. O.; Kayiwa, J. T.; Okolie, J. C.; Xavier, J. S.; Gyamfi, J.; Wamala, J. F.; Bonney, J. H. K.; Nyandwi, J.; Everatt, J.; Nakaseegu, J.; Ngoi, J. M.; Namulondo, J.; Oguzie, J. U.; Andeko, J. C.; Lutwama, J. J.; Mogga, J. J. H.; O'Grady, J.; Siddle, K. J.; Victoir, K.; Adeyemi, K. T.; Tumedi, K. A.; Carvalho, K. S.; Mohammed, K. S.; Dellagi, K.; Musonda, K. G.; Duedu, K. O.; Fki-Berrajah, L.; Singh, L.; Kepler, L. M.; Biscornet, L.; de Oliveira Martins, L.; Chabuka, L.; Olubayo, L.; Ojok, L. D.; Deng, L. L.; Ochola-Oyier, L. I.; Tyers, L.; Mine, M.; Ramuth, M.; Mastouri, M.; ElHefnawi, M.; Mbanne, M.; Matsheka, M. I.; Kebabonye, M.; Diop, M.; Momoh, M.; Lima Mendonça, M. D. L.; Venter, M.; Paye, M. F.; Faye, M.; Nyaga, M. M.; Mareka, M.; Damaris, M. M.; Mburu, M. W.; Mpina, M. G.; Owusu, M.; Wiley, M. R.; Tatfeng, M. Y.; Ayekaba, M. O.; Abouelhoda, M.; Beloufa, M. A.; Seadawy, M. G.; Khalifa, M. K.; Matobo, M. M.; Kane, M.; Salou, M.; Mbulawa, M. B.; Mwenda, M.; Allam, M.; Phan, M. V. T.; Abid, N.; Rujeni, N.; Abuzaid, N.; Ismael, N.; Elguindy, N.; Top, N. M.; Dia, N.; Mabunda, N.; Hsiao, N. Y.; Silochi, N. B.; Francisco, N. M.; Saasa, N.; Bbosa, N.; Murunga, N.; Gumede, N.; Wolter, N.; Sitharam, N.; Ndodo, N.; Ajayi, N. A.; Tordo, N.; Mbhele, N.; Razanajatovo, N. H.; Iguosadolo, N.; Mba, N.; Kingsley, O. C.; Sylvanus, O.; Femi, O.; Adewumi, O. M.; Testimony, O.; Ogunsanya, O. A.; Fakayode, O.; Ogah, O. E.; Oludayo, O. E.; Faye, O.; Smith-Lawrence, P.; Ondoa, P.; Combe, P.; Nabisubi, P.; Semanda, P.; Oluniyi, P. E.; Arnaldo, P.; Quashie, P. K.; Okokhere, P. O.; Bejon, P.; Dussart, P.; Bester, P. A.; Mbala, P. K.; Kaleebu, P.; Abechi, P.; El-Shesheny, R.; Joseph, R.; Aziz, R. K.; Essomba, R. G.; Ayivor-Djanie, R.; Njouom, R.; Phillips, R. O.; Gorman, R.; Kingsley, R. A.; Neto Rodrigues, Rmdesa, Audu, R. A.; Carr, R. A. A.; Gargouri, S.; Masmoudi, S.; Bootsma, S.; Sankhe, S.; Mohamed, S. I.; Femi, S.; Mhalla, S.; Hosch, S.; Kassim, S. K.; Metha, S.; Trabelsi, S.; Agwa, S. H.; Mwangi, S. W.; Doumbia, S.; Makiala-Mandanda, S.; Aryeetey, S.; Ahmed, S. S.; Ahmed, S. M.; Elhamoumi, S.; Moyo, S.; Lutucuta, S.; Gaseitsiwe, S.; Jalloh, S.; Andriamandimby, S. F.; Oguntope, S.; Grayo, S.; Lekana-Douki, S.; Prosolek, S.; Ouangraoua, S.; van Wyk, S.; Schaffner, S. F.; Kanyerezi, S.; Ahuka-Mundeke, S.; Rudder, S.; Pillay, S.; Nabadda, S.; Behillil, S.; Budiaki, S. L.; van der Werf, S.; Mashe, T.; Mohale, T.; Le-Viet, T.; Velavan, T. P.; Schindler, T.; Maponga, T. G.; Bedford, T.; Anyaneji, U. J.; Chinedu, U.; Ramphal, U.; George, U. E.; Enouf, V.; Nene, V.; Gorova, V.; Roshdy, W. H.; Karim, W. A.; Ampofo, W. K.; Preiser, W.; Choga, W. T.; Ahmed, Y. A.; Ramphal, Y.; Bediako, Y.; Naidoo, Y.; Butera, Y.; de Laurent, Z. R.; Ouma, A. E. O.; von Gottberg, A.; Githinji, G.; Moeti, M.; Tomori, O.; Sabeti, P. C.; Sall, A. A.; Oyola, S. O.; Tebeje, Y. K.; Tessema, S. K.; de Oliveira, T.; Happi, C.; Lessells, R.; Nkengasong, J.; Wilkinson, E..
Science ; : eabq5358, 2022.
Article in English | PubMed | ID: covidwho-2029459

ABSTRACT

Investment in SARS-CoV-2 sequencing in Africa over the past year has led to a major increase in the number of sequences generated, now exceeding 100,000 genomes, used to track the pandemic on the continent. Our results show an increase in the number of African countries able to sequence domestically, and highlight that local sequencing enables faster turnaround time and more regular routine surveillance. Despite limitations of low testing proportions, findings from this genomic surveillance study underscore the heterogeneous nature of the pandemic and shed light on the distinct dispersal dynamics of Variants of Concern, particularly Alpha, Beta, Delta, and Omicron, on the continent. Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve, while the continent faces many emerging and re-emerging infectious disease threats. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century.

3.
Topics in Antiviral Medicine ; 30(1 SUPPL):300-301, 2022.
Article in English | EMBASE | ID: covidwho-1880872

ABSTRACT

Background: South Africa is one of the African countries most affected by the COVID-19 pandemic. SARS-CoV-2 seroprevalence surveys provide valuable epidemiological information given the existence of asymptomatic cases. We report the findings of the first nationwide household-based population estimates of SARS-CoV-2 seroprevalence among people aged 12 years and older in South Africa. Methods: The survey used a cross-sectional multi-stage stratified cluster design undertaken over two separate time periods (November 2020-February 2021 and April-June 2021) which coincided with the second and third waves of the pandemic in South Africa. The Abbott® and Euroimmun® ani-SARS CoV-2 antibody assays were used to test for SARS-CoV-2 antibodies, the latter being the final result. The survey data was weighted with final individual weights benchmarked against 2020 mid-year population estimates by age, race, sex, and province. Frequencies were used to describe characteristics of the study population and SARS-CoV-2 seroprevalence. Bivariate and multivariate logistics regression analysis were used to identify factors associated with SARS-CoV-2 seropositivity. Results: 13640 participants gave a blood sample. The SARS-CoV-2 seroprevalence using the Euroimmun assay was 19.6% (95% CI 17.9-21.3) over the study period, translating to an estimated 8 675 265 (95% CI 7 508 393-9 842 137) estimated infections among people aged 12 years and older across South Africa by June 2021. Seroprevalence was higher in the Free State (26.8%), and Eastern Cape (26.0%) provinces (Figure). Increased odds of seropositivity were associated with prior PCR testing [aOR=1.29 (95% CI: 0.99-1.66)], being female [aOR=1.28 (95% CI 1.00-1.64), p=0.048] and hypertension, [aOR=1.28 (95% CI 1.00-1.640, p=0.048]. Conclusion: These findings highlight the burden of infection in South Africa by June 2021, and support testing strategies that focus on individuals with known exposure or symptoms since universal testing is not feasible. Females and younger people were more likely to be infected suggesting need for additional strategies targeting these populations. The estimated number of infections was 6.5 times higher than the number of SARS-CoV-2 cases reported nationally, suggesting that the country's testing strategy and capacity partly explain the dynamics of the pandemic. It is therefore essential to bolster testing capacity and to rapidly scale up vaccinations in order to contain the spread of the virus in the country.

4.
Topics in Antiviral Medicine ; 30(1 SUPPL):332, 2022.
Article in English | EMBASE | ID: covidwho-1880610

ABSTRACT

Background: Accurate and reliable serological assays are essential for epidemiological surveillance of SARS-CoV-2. Several commercial anti-SARS assays are available and use cases for serological testing includes surveillance. However, there is growing evidence of varying performance of SARS-CoV-2 assays dependent of their format. We compare the performance of 3 different assays used in a national serosurvey undertaken between April and June 2021, in South Africa before widescale vaccination roll out. Methods: Venous blood samples from participants ≥12 years were transported under cold chain to a central testing laboratory within 24 hours of collection. Samples were tested for SARS CoV-2 antibodies with the Abbott nucleocapsid (NC)-based Architect anti-SARS CoV-2 chemiluminescent microparticle immunoassay (CMIA), the EuroImmun Spike (S)-based assay and the Roche total IgG NC-based Elecsys Anti-SARS-CoV-2 electrochemiluminescence immunoassay (ECLIA) on the Cobas e411 platform. We compared antibody detection proportions. Results: 8146 participants (median age 40 years, IQR 26-55) 5.6% of whom reported ≥1 SARS-CoV-2 symptom in the preceding 3 months gave a blood sample. Samples were tested on the Abbott assay with different cut-offs:-15.5% tested positive at the 1.40 cut-off and 26.8% at the 0.49 lower cut-off. 21.6% of the samples tested positive on the Euroimmun and 39.0% tested positive on the Roche assay (Table). 286 samples were from respondents self-reporting a prior positive PCR test, and among them 149(52.1%), 156(54.6%), and 206(72.3%) were positive on the Abbott (1.40 cut-off), Euroimmun and Roche assays respectively. 116/286(40.6%) of these were positive on all three assays and with 21(7.3%) positive on Roche only. 224/286(78.3%) of those reporting prior PCR test positivity were positive at the lower Abbott cut-off, with 47(16.4%) positive on Abbott only. Conclusion: These samples collected before wide scale vaccination roll out in South Africa show variable performance of these assays with the Roche NC assay detecting more infections that both the Abbott NC assay(0.40 cut-off) and the Euroimmun S assay.This could be reflective of seroreversion previously reported with Abbott and Euroimmun, and the greater sensitivity of Roche assay targeting the more abundant NC as an epitope. Use of direct, double Antigen-sandwich-based assays that are stable and have increased sensitivity over time may be optimal to detect both natural and vaccine-induced immunity in serosurveys.

5.
Topics in Antiviral Medicine ; 30(1 SUPPL):10, 2022.
Article in English | EMBASE | ID: covidwho-1880370

ABSTRACT

Background: Botswana has a high prevalence of women living with HIV (WLHIV) and experienced a severe nationwide COVID-19 epidemic in 2021. We evaluated adverse birth outcomes among women routinely tested for COVID-19 by HIV status, during a period when few women had access to COVID-19 vaccination. Methods: The Tsepamo Study performs birth outcomes surveillance at government hospitals throughout Botswana. We analyzed data from 13 Tsepamo sites that performed routine COVID-19 screening at delivery with rapid antigen or PCR testing between Sept 1, 2020 and Sept 30, 2021 (start dates differed by site). This analysis includes singleton deliveries with known HIV status and a COVID-19 screening test between 14 days prior and 3 days after delivery. Outcomes included maternal death, preterm delivery (PTD), very preterm delivery (VPTD), small for gestational age (SGA), very small for gestational age (VSGA), stillbirth, and neonatal death. Differences in outcomes by COVID-19 and HIV status were assessed using log binomial regression adjusted for maternal age. Results: A total of 17,627 deliveries occurred at the included sites during COVID-19 screening, and 11,149 (63.3%) were screened for COVID-19;among 10,090 (99.7%) with a known HIV status, 530 (5.3%) COVID-19 tests were positive, including 141/2129 (6.6%) among WLHIV and 389/7961 (4.9%) among women without HIV (aRR 1.32, 95% CI 1.09, 1.60). Maternal deaths were reported in 19 (3.8%) women with COVID-19 and 11 (0.12%) women without COVID-19 (aRR 30.5, 95% CI 14.6, 63.7), and did not differ by HIV status. Adverse birth outcomes (any) were more common among infants born to women with COVID-19 (34.3% vs. 26.3%;aRR 1.32, 95% CI 1.16,1.49), including PTD (21.2% vs. 13.3%;aRR 1.60, 95% CI 1.34,1.90) and stillbirth (5.5% vs. 2.8%;aRR 1.89, 95% CI 1.30,2.75), and there was a trend for higher neonatal mortality (2.0% vs. 1.4%, aRR 1.5, 95% CI 0.79, 2.85). Most adverse birth outcomes were highest among infants exposed to both COVID-19 and HIV (Figure 1). Conclusion: Infants born to women with COVID-19 experienced more adverse birth outcomes than other infants, including a 2-fold risk for stillbirth. Those exposed to both COVID-19 and HIV had the highest risk for most adverse outcomes. Further research is warranted to understand the biological interaction between COVID-19, HIV infection, and adverse birth outcomes, and whether some associations were impacted by challenges in care delivery during the height of the COVID-19 epidemic in Botswana.

6.
Embase;
Preprint in English | EMBASE | ID: ppcovidwho-326897

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) epidemic in southern Africa has been characterised by three distinct waves. The first was associated with a mix of SARS-CoV-2 lineages, whilst the second and third waves were driven by the Beta and Delta variants respectively1–3. In November 2021, genomic surveillance teams in South Africa and Botswana detected a new SARS-CoV-2 variant associated with a rapid resurgence of infections in Gauteng Province, South Africa. Within three days of the first genome being uploaded, it was designated a variant of concern (Omicron) by the World Health Organization and, within three weeks, had been identified in 87 countries. The Omicron variant is exceptional for carrying over 30 mutations in the spike glycoprotein, predicted to influence antibody neutralization and spike function4. Here, we describe the genomic profile and early transmission dynamics of Omicron, highlighting the rapid spread in regions with high levels of population immunity.

7.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-321181

ABSTRACT

Background: On 27 th March the Zimbabwean government declared the Covid-19 pandemic a ‘national disaster’. Travel restrictions and emergency regulations have had significant impacts on maternity services, including staff shortages, resource stock-outs, and closure of antenatal clinics. Estimates of the indirect impact of Covid-19 on maternal and perinatal mortality expect it to be considerable, but little data is yet available.This study aims to examine the impact of Covid-19 and lockdown control measures on non-Covid outcomes in a government tertiary level maternity unit in Bulawayo, Zimbabwe, by comparing maternal and perinatal morbidity and mortality before and after lockdown was implemented. Methods: : This is a retrospective, observational study, using a cross-sectional design to compare routine monthly maternal and perinatal statistics three months before and after Covid-19 emergency measures at Mpilo Central Hospital. Results: : Between January-March and April-June 2020, average monthly deliveries fell from 747 to 681 and Caesarean section rates from 29.8% to 26.6%. Women with unbooked pregnancies presenting in labour almost doubled from 4.4% to 8%. There was no substantial change, however, in maternal mortality or severe maternal morbidity (post-partum haemorrhage (PPH), uterine rupture, severe preeclampsia/eclampsia), stillbirth rate or special care baby unit (SCBU) admission. There was a small increase in early neonatal death (ENND) from an average of 18.7 to 24.0 deaths per month. Conclusion: Maternal and perinatal outcomes must continue to be monitored to assess the impact of Covid-19 and lockdown measures as the epidemic in Zimbabwe unfolds. Despite the vulnerability of the healthcare system, the resilience and commitment of maternity units and healthcare workers to providing care in the most difficult circumstances should not be underestimated.

8.
Rairo-Operations Research ; 54(6):1875-1890, 2020.
Article in English | Web of Science | ID: covidwho-1396536

ABSTRACT

In this paper we model the dynamics of a spreading pandemic over a country using a new dynamical and decentralised differential model with the main objective of studying the effect of different policies of social isolation (social distancing) over the population to control the spread of the pandemic. A probabilistic infection process with time lags is introduced in the dynamics with the main contribution being the proposed model to explicitly look at levels of interaction between towns and regions within the considered country. We believe the strategies and findings here will help practitioners, planners and Governments to put in place better strategies to control the spread of pandemics, thus saving lives and minimizing the impact of pandemia on socio-economic development and the populations livelihood.

9.
S Afr Med J ; 110(5): 341-342, 2020 03 27.
Article in English | MEDLINE | ID: covidwho-380142
SELECTION OF CITATIONS
SEARCH DETAIL