Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 72
Filter
1.
Front Pharmacol ; 14: 1124693, 2023.
Article in English | MEDLINE | ID: covidwho-2317756

ABSTRACT

SARS-CoV-2-mediated interactions with drug metabolizing enzymes and membrane transporters (DMETs) in different tissues, especially lung, the main affected organ may limit the clinical efficacy and safety profile of promising COVID-19 drugs. Herein, we investigated whether SARS-CoV-2 infection could dysregulate the expression of 25 clinically relevant DMETs in Vero E6 cells and postmortem lung tissues from COVID-19 patients. Also, we assessed the role of 2 inflammatory and 4 regulatory proteins in modulating the dysregulation of DMETs in human lung tissues. We showed for the first time that SARS-CoV-2 infection dysregulates CYP3A4 and UGT1A1 at the mRNA level, as well as P-gp and MRP1 at the protein level, in Vero E6 cells and postmortem human lung tissues, respectively. We observed that at the cellular level, DMETs could potentially be dysregulated by SARS-CoV-2-associated inflammatory response and lung injury. We uncovered the pulmonary cellular localization of CYP1A2, CYP2C8, CYP2C9, and CYP2D6, as well as ENT1 and ENT2 in human lung tissues, and observed that the presence of inflammatory cells is the major driving force for the discrepancy in the localization of DMETs between COVID-19 and control human lung tissues. Because alveolar epithelial cells and lymphocytes are both sites of SARS-CoV-2 infection and localization of DMETs, we recommend further investigation of the pulmonary pharmacokinetic profile of current COVID-19 drug dosing regimen to improve clinical outcomes.

2.
Open Forum Infect Dis ; 10(5): ofad190, 2023 May.
Article in English | MEDLINE | ID: covidwho-2316229

ABSTRACT

Background: COVID-19 presents with a breadth of symptomatology including a spectrum of clinical severity requiring intensive care unit (ICU) admission. We investigated the mucosal host gene response at the time of gold standard COVID-19 diagnosis using clinical surplus RNA from upper respiratory tract swabs. Methods: Host response was evaluated by RNA-sequencing, and transcriptomic profiles of 44 unvaccinated patients including outpatients and in-patients with varying levels of oxygen supplementation were included. Additionally, chest X-rays were reviewed and scored for patients in each group. Results: Host transcriptomics revealed significant changes in the immune and inflammatory response. Patients destined for the ICU were distinguished by the significant upregulation of immune response pathways and inflammatory chemokines, including cxcl2 which has been linked to monocyte subsets associated with COVID-19 related lung damage. In order to temporally associate gene expression profiles in the upper respiratory tract at diagnosis of COVID-19 with lower respiratory tract sequalae, we correlated our findings with chest radiography scoring, showing nasopharygeal or mid-turbinate sampling can be a relevant surrogate for downstream COVID-19 pneumonia/ICU severity. Conclusions: This study demonstrates the potential and relevance for ongoing study of the mucosal site of infection of SARS-CoV-2 using a single sampling that remains standard of care in hospital settings. We highlight also the archival value of high quality clinical surplus specimens, especially with rapidly evolving COVID-19 variants and changing public health/vaccination measures.

4.
Anal Chem ; 95(14): 5877-5885, 2023 04 11.
Article in English | MEDLINE | ID: covidwho-2267171

ABSTRACT

Designing diagnostic assays to genotype rapidly mutating viruses remains a challenge despite the overall improvements in nucleic acid detection technologies. RT-PCR and next-generation sequencing are unsuitable for genotyping during outbreaks or in point-of-care detection due to their infrastructure requirements and longer turnaround times. We developed a quantum dot barcode multiplexing system to genotype mutated viruses. We designed multiple quantum dot barcodes to target conserved, wildtype, and mutated regions of SARS-CoV-2. We calculated ratios of the signal output from different barcodes that enabled SARS-CoV-2 detection and identified SARS-CoV-2 variant strains from a sample. We detected different sequence types, including conserved genes, nucleotide deletions, and single nucleotide substitutions. Our system detected SARS-CoV-2 patient specimens with 98% sensitivity and 94% specificity across 91 patient samples. Further, we leveraged our barcoding and ratio system to track the emergence of the N501Y SARS-CoV-2 mutation from December 2020 to May 2021 and demonstrated that the more transmissible N501Y mutation started to dominate infections by April 2021. Our barcoding and signal ratio approach can genotype viruses and track the emergence of viral mutations in a single diagnostic test. This technology can be extended to tracking other viruses. Combined with smartphone detection technologies, this assay can be adapted for point-of-care tracking of viral mutations in real time.


Subject(s)
COVID-19 , Nucleic Acids , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , Genotype , Nucleotides , Mutation
7.
Heliyon ; 9(1): e12744, 2023 Jan.
Article in English | MEDLINE | ID: covidwho-2165334

ABSTRACT

SARS-CoV-2 depends on host cell components for infection and replication. Identification of virus-host dependencies offers an effective way to elucidate mechanisms involved in viral infection and replication. If druggable, host factor dependencies may present an attractive strategy for anti-viral therapy. In this study, we performed genome wide CRISPR knockout screens in Vero E6 cells and four human cell lines including Calu-3, UM-UC-4, HEK-293 and HuH-7 to identify genetic regulators of SARS-CoV-2 infection. Our findings identified only ACE2, the cognate SARS-CoV-2 entry receptor, as a common host dependency factor across all cell lines, while other host genes identified were largely cell line specific, including known factors TMPRSS2 and CTSL. Several of the discovered host-dependency factors converged on pathways involved in cell signalling, immune-related pathways, and chromatin modification. Notably, the chromatin modifier gene KMT2C in Calu-3 cells had the strongest impact in preventing SARS-CoV-2 infection when perturbed.

8.
Intensive Care Res ; : 1-12, 2022 Nov 09.
Article in English | MEDLINE | ID: covidwho-2119895

ABSTRACT

Cases of vaccine breakthrough, especially in variants of concern (VOCs) infections, are emerging in coronavirus disease (COVID-19). Due to mutations of structural proteins (SPs) (e.g., Spike proteins), increased transmissibility and risk of escaping from vaccine-induced immunity have been reported amongst the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Remdesivir was the first to be granted emergency use authorization but showed little impact on survival in patients with severe COVID-19. Remdesivir is a prodrug of the nucleoside analogue GS-441524 which is converted into the active nucleotide triphosphate to disrupt viral genome of the conserved non-structural proteins (NSPs) and thus block viral replication. GS-441524 exerts a number of pharmacological advantages over Remdesivir: (1) it needs fewer conversions for bioactivation to nucleotide triphosphate; (2) it requires only nucleoside kinase, while Remdesivir requires several hepato-renal enzymes, for bioactivation; (3) it is a smaller molecule and has a potency for aerosol and oral administration; (4) it is less toxic allowing higher pulmonary concentrations; (5) it is easier to be synthesized. The current article will focus on the discussion of interactions between GS-441524 and NSPs of VOCs to suggest potential application of GS-441524 in breakthrough SARS-CoV-2 infections. Supplementary Information: The online version contains supplementary material available at 10.1007/s44231-022-00021-4.

9.
Nat Microbiol ; 7(12): 2011-2024, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2117568

ABSTRACT

Wildlife reservoirs of broad-host-range viruses have the potential to enable evolution of viral variants that can emerge to infect humans. In North America, there is phylogenomic evidence of continual transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from humans to white-tailed deer (Odocoileus virginianus) through unknown means, but no evidence of transmission from deer to humans. We carried out an observational surveillance study in Ontario, Canada during November and December 2021 (n = 300 deer) and identified a highly divergent lineage of SARS-CoV-2 in white-tailed deer (B.1.641). This lineage is one of the most divergent SARS-CoV-2 lineages identified so far, with 76 mutations (including 37 previously associated with non-human mammalian hosts). From a set of five complete and two partial deer-derived viral genomes we applied phylogenomic, recombination, selection and mutation spectrum analyses, which provided evidence for evolution and transmission in deer and a shared ancestry with mink-derived virus. Our analysis also revealed an epidemiologically linked human infection. Taken together, our findings provide evidence for sustained evolution of SARS-CoV-2 in white-tailed deer and of deer-to-human transmission.


Subject(s)
COVID-19 , Deer , Animals , Humans , SARS-CoV-2/genetics
10.
J Assoc Med Microbiol Infect Dis Can ; 5(4): 214-222, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-2109649

ABSTRACT

We provide an update to the Association of Medical Microbiology and Infectious Disease Canada foundation guidance for the upcoming 2020-2021 influenza season in Canada. Important issues for this year include the implications of co-circulation of SARS-CoV-2, the role of diagnostic testing, and a restatement of dosing and administration recommendations for neuraminidase inhibitors in various age groups and underlying health conditions. Although peramivir and baloxivir are now licensed in Canada, neither is currently marketed, so this guidance focuses on further optimizing the use of oseltamivir and zanamivir.


Nous actualisons l'information sur les directives de la Fondation de l'Association pour la microbiologie médicale et l'infectiologie Canada en vue de la saison grippale 2020­2021 au Canada. Cette année, les enjeux importants touchent les conséquences de la co-circulation de la maladie à coronavirus 2019, le rôle des tests diagnostiques et la réaffirmation des recommandations relatives aux maladies sous-jacentes ainsi qu'à la posologie et à l'administration des inhibiteurs de la neuraminidase dans divers groupes d'âge. Même si le péramivir et le baloxivir sont désormais homologués au Canada, ces médicaments n'y sont pas encore commercialisés, et c'est pourquoi les présentes directives visent à optimiser l'utilisation de l'oseltamivir et du zanamivir.

11.
Open Forum Infect Dis ; 9(12): ofac564, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2107556

ABSTRACT

Lower viral loads were observed in the upper respiratory tract of patients infected with BA.1, whereas patients infected with BA.2 and BA.5 had comparable viral loads to those seen with Alpha or Delta. This suggests that viral loads are likely not responsible for the increased transmission of the Omicron lineages.

12.
Journal of the Association of Medical Microbiology and Infectious Disease Canada = Journal officiel de l'Association pour la microbiologie medicale et l'infectiologie Canada ; 5(4):214-222, 2022.
Article in English | EuropePMC | ID: covidwho-2102334
13.
Journal of the Association of Medical Microbiology and Infectious Disease Canada = Journal officiel de l'Association pour la microbiologie medicale et l'infectiologie Canada ; 6(4):259-268, 2022.
Article in English | EuropePMC | ID: covidwho-2102859
14.
J Infect ; 85(6): 666-670, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2082659

ABSTRACT

OBJECTIVES: SARS-CoV-2 shedding has changed as new variants have emerged. It is important to understand the trajectory of PCR positivity due to Omicron in vaccinated populations. METHODS: Double- or triple-vaccinated adult household contacts of individuals with COVID-19 self-collected oral-nasal swabs for 14 days. A hierarchical linear model estimated viral load trajectories and an exploratory logistic regression model assessed for factors associated with viral detection before symptom onset. RESULTS: Forty-one participants developed COVID-19 with 37 (90%) symptomatic. Viral load peaked 3 days after symptom onset at a median concentration of 8.83 log10 copies/milliliter (range 5.95-10.32) and the mean difference between participants with two or three COVID-19 vaccine doses was 0.02 log10 copies/milliliter (95% CI -0.13 to 0.16). PCR positivity began with a range of 4 days prior to 3 days after symptom onset and was positive on the day of symptom onset in 76% (28/37). SARS-CoV-2 detection on the day of symptom onset was less likely among those with 2 vaccine doses (OR 0.13, 95%CI 0.02-0.79). 68% (25/37) of infected participants had detectable SARS-CoV-2 with Ct<30 at 7 days after symptom onset. CONCLUSIONS: Peak viral load and duration of PCR positivity were similar in participants with COVID-19 after two versus three COVID-19 vaccine doses. Onset of viral detection relative to symptom onset was variable.


Subject(s)
COVID-19 Vaccines , COVID-19 , Adult , Humans , SARS-CoV-2 , COVID-19/prevention & control , Viral Load
15.
iScience ; 25(11): 105316, 2022 Nov 18.
Article in English | MEDLINE | ID: covidwho-2061301

ABSTRACT

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) spike glycoprotein (S) binds to angiotensin-converting enzyme 2 (ACE2) to mediate membrane fusion via two distinct pathways: 1) a surface, serine protease-dependent or 2) an endosomal, cysteine protease-dependent pathway. In this study, we found that SARS-CoV-2 S has a wider protease usage and can also be activated by TMPRSS13 and matrix metalloproteinases (MMPs). We found that MMP-2 and MMP-9 played roles in SARS-CoV-2 S cell-cell fusion and TMPRSS2- and cathepsin-independent viral entry in cells expressing high MMP levels. MMP-dependent viral entry required cleavage at the S1/S2 junction in viral producer cells, and differential processing of variants of concern S dictated its usage; the efficiently processed Delta S preferred metalloproteinase-dependent entry when available, and less processed Omicron S was unable to us metalloproteinases for entry. As MMP-2/9 are released during inflammation, they may play roles in S-mediated cytopathic effects, tropism, and disease outcome.

16.
J Am Chem Soc ; 144(40): 18338-18349, 2022 10 12.
Article in English | MEDLINE | ID: covidwho-2050265

ABSTRACT

The development of robust biosensing strategies that can be easily implemented in everyday life remains a challenge for the future of modern biosensor research. While several reagentless approaches have attempted to address this challenge, they often achieve user-friendliness through sacrificing sensitivity or universality. While acceptable for certain applications, these trade-offs hinder the widespread adoption of reagentless biosensing technologies. Here, we report a novel approach to reagentless biosensing that achieves high sensitivity, rapid detection, and universality using the SARS-CoV-2 virus as a model target. Universality is achieved by using nanoscale molecular pendulums, which enables reagentless electrochemical biosensing through a variable antibody recognition element. Enhanced sensitivity and rapid detection are accomplished by incorporating the coffee-ring phenomenon into the sensing scheme, allowing for target preconcentration on a ring-shaped electrode. Using this approach, we obtained limits of detection of 1 fg/mL and 20 copies/mL for the SARS-CoV-2 nucleoproteins and viral particles, respectively. In addition, clinical sample analysis showed excellent agreement with Ct values from PCR-positive SARS-CoV-2 patients.


Subject(s)
Biosensing Techniques , COVID-19 , COVID-19/diagnosis , Electrodes , Humans , Nucleoproteins , SARS-CoV-2/genetics
18.
PLoS Pathog ; 18(8): e1010724, 2022 08.
Article in English | MEDLINE | ID: covidwho-2002340

ABSTRACT

A dysregulated proinflammatory cytokine response is characteristic of severe coronavirus infections caused by SARS-CoV-2, yet our understanding of the underlying mechanism responsible for this imbalanced immune response remains incomplete. Processing bodies (PBs) are cytoplasmic membraneless ribonucleoprotein granules that control innate immune responses by mediating the constitutive decay or suppression of mRNA transcripts, including many that encode proinflammatory cytokines. PB formation promotes turnover or suppression of cytokine RNAs, whereas PB disassembly corresponds with the increased stability and/or translation of these cytokine RNAs. Many viruses cause PB disassembly, an event that can be viewed as a switch that rapidly relieves cytokine RNA repression and permits the infected cell to respond to viral infection. Prior to this submission, no information was known about how human coronaviruses (CoVs) impacted PBs. Here, we show SARS-CoV-2 and the common cold CoVs, OC43 and 229E, induced PB loss. We screened a SARS-CoV-2 gene library and identified that expression of the viral nucleocapsid (N) protein from SARS-CoV-2 was sufficient to mediate PB disassembly. RNA fluorescent in situ hybridization revealed that transcripts encoding TNF and IL-6 localized to PBs in control cells. PB loss correlated with the increased cytoplasmic localization of these transcripts in SARS-CoV-2 N protein-expressing cells. Ectopic expression of the N proteins from five other human coronaviruses (OC43, MERS, 229E, NL63 and SARS-CoV) did not cause significant PB disassembly, suggesting that this feature is unique to SARS-CoV-2 N protein. These data suggest that SARS-CoV-2-mediated PB disassembly contributes to the dysregulation of proinflammatory cytokine production observed during severe SARS-CoV-2 infection.


Subject(s)
COVID-19 , Coronavirus OC43, Human , Cytokines , Humans , In Situ Hybridization, Fluorescence , Processing Bodies , RNA , SARS-CoV-2
19.
Sci Rep ; 12(1): 10867, 2022 06 27.
Article in English | MEDLINE | ID: covidwho-1908281

ABSTRACT

The emergence of Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2) was met with rapid development of robust molecular-based detection assays. Many SARS-CoV-2 molecular tests target multiple genetic regions of the virus to maximize detection and protect against diagnostic escape. Despite the relatively moderate mutational rate of SARS-CoV-2, numerous mutations with known negative impact on diagnostic assays have been identified. In early 2021, we identified four samples positive for SARS-CoV-2 with a nucleocapsid (N) gene drop out on Cepheid Xpert® Xpress SARS-CoV-2 assay. Sequencing revealed a single common mutation in the N gene C29200T. Spatiotemporal analysis showed that the mutation was found in at least six different Canadian provinces from May 2020 until May 2021. Phylogenetic analysis showed that this mutation arose multiple times in Canadian samples and is present in six different variants of interest and of concern. The Cepheid testing platform is commonly used in Canada including in remote regions. As such, the existence of N gene mutation dropouts required further investigation. While commercial SARS-CoV-2 molecular detection assays have contributed immensely to the response effort, many vendors are reluctant to make primer/probe sequences publicly available. Proprietary primer/probe sequences create diagnostic 'blind spots' for global SARS-CoV-2 sequence monitoring and limits the ability to detect and track the presence and prevalence of diagnostic escape mutations. We hope that our industry partners will seriously consider making primer/probe sequences available, so that diagnostic escape mutants can be identified promptly and responded to appropriately to maintain diagnostic accuracy.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19 Testing , Canada/epidemiology , Clinical Laboratory Techniques , Humans , Mutation , Nucleocapsid/genetics , Phylogeny , Polymerase Chain Reaction , SARS-CoV-2/genetics , Sensitivity and Specificity
20.
Infect Control Hosp Epidemiol ; : 1-3, 2022 May 23.
Article in English | MEDLINE | ID: covidwho-1900371

ABSTRACT

Among outpatients with coronavirus disease 2019 (COVID-19) due to the severe acute respiratory coronavirus virus 2 (SARS-CoV-2) δ (delta) variant who did and did not receive 2 vaccine doses at 7 days after symptom onset, there was no difference in viral shedding (cycle threshold difference 0.59, 95% CI, -4.68 to 3.50; P = .77) with SARS-CoV-2 cultured from 2 (7%) of 28 and 1 (4%) of 26 outpatients, respectively.

SELECTION OF CITATIONS
SEARCH DETAIL