Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Add filters

Main subject
Year range
PLoS One ; 16(1): e0237202, 2021.
Article in English | MEDLINE | ID: covidwho-1067386


BACKGROUND: The novel coronavirus (SARS-CoV-2) pandemic spread rapidly worldwide increasing exponentially in Italy. To date, there is lack of studies describing clinical characteristics of the people at high risk of infection. Hence, we aimed (i) to identify clinical predictors of SARS-CoV-2 infection risk, (ii) to develop and validate a score predicting SARS-CoV-2 infection risk, and (iii) to compare it with unspecific scores. METHODS: Retrospective case-control study using administrative health-related database was carried out in Southern Italy (Campania region) among beneficiaries of Regional Health Service aged over than 30 years. For each person with SARS-CoV-2 confirmed infection (case), up to five controls were randomly matched for gender, age and municipality of residence. Odds ratios and 90% confidence intervals for associations between candidate predictors and risk of infection were estimated by means of conditional logistic regression. SARS-CoV-2 Infection Score (SIS) was developed by generating a total aggregate score obtained from assignment of a weight at each selected covariate using coefficients estimated from the model. Finally, the score was categorized by assigning increasing values from 1 to 4. Discriminant power was used to compare SIS performance with that of other comorbidity scores. RESULTS: Subjects suffering from diabetes, anaemias, Parkinson's disease, mental disorders, cardiovascular and inflammatory bowel and kidney diseases showed increased risk of SARS-CoV-2 infection. Similar estimates were recorded for men and women and younger and older than 65 years. Fifteen conditions significantly contributed to the SIS. As SIS value increases, risk progressively increases, being odds of SARS-CoV-2 infection among people with the highest SIS value (SIS = 4) 1.74 times higher than those unaffected by any SIS contributing conditions (SIS = 1). CONCLUSION: Conditions and diseases making people more vulnerable to SARS-CoV-2 infection were identified by the current study. Our results support decision-makers in identifying high-risk people and adopting of preventive measures to minimize the spread of further epidemic waves.

COVID-19/epidemiology , Adult , Aged , COVID-19/prevention & control , Clinical Decision-Making , Cohort Studies , Comorbidity , Female , Humans , Italy/epidemiology , Male , Risk Factors
Non-conventional in English | WHO COVID | ID: covidwho-650599


We aimed to analyze baseline socio-demographic and clinical factors associated with an increased likelihood of mortality in men and women with coronavirus disease (COVID-19). We conducted a retrospective cohort study (PRECOVID Study) on all 4412 individuals with laboratory-confirmed COVID-19 in Aragon, Spain, and followed them for at least 30 days from cohort entry. We described the socio-demographic and clinical characteristics of all patients of the cohort. Age-adjusted logistic regressions models were performed to analyze the likelihood of mortality based on demographic and clinical variables. All analyses were stratified by sex. Old age, specific diseases such as diabetes, acute myocardial infarction, or congestive heart failure, and dispensation of drugs like vasodilators, antipsychotics, and potassium-sparing agents were associated with an increased likelihood of mortality. Our findings suggest that specific comorbidities, mainly of cardiovascular nature, and medications at the time of infection could explain around one quarter of the mortality in COVID-19 disease, and that women and men probably share similar but not identical risk factors. Nonetheless, the great part of mortality seems to be explained by other patient- and/or health-system-related factors. More research is needed in this field to provide the necessary evidence for the development of early identification strategies for patients at higher risk of adverse outcomes.