ABSTRACT
INTRODUCTION: When coronavirus infectious disease-2019 (COVID-19) blew up, ill-fated auguries on the collision between COVID-19 and the human immunodeficiency virus (HIV) epidemics loomed. AREAS COVERED: Data from observational studies suggest similar incidence attacks of SARS-CoV-2 infection in people living with HIV (PLWH) and HIV-uninfected populations. The mortality rate of COVID-19 is similar in both populations too. The authors discuss the role of combination antiretroviral therapy (cART) in preventing infection or reducing COVID-19 severity. They also discuss the pharmacological interventions for COVID-19 in PLWH. EXPERT OPINION: Management of COVID-19 in PLWH is no different from the general population. It should be based on careful supportive care, emphasizing lung-protective ventilation, and wise pharmacological interventions. The antiviral drug remdesivir and dexamethasone are the only pharmacological interventions with clinical benefit for COVID-19, whereas anticoagulation may prevent thrombotic complications. The experience with using these drugs in PLWH is limited, which prevents from rendering well-founded conclusions. Until more data on COVID-19 in PLWH become available, the best weapons within our reach are sound supportive care and sensible use of RDV and dexamethasone, bearing in mind the potential for drug-drug interactions of most corticosteroids and antiretroviral drugs.
Subject(s)
COVID-19 , HIV Infections , Anti-Retroviral Agents/therapeutic use , Antiviral Agents/therapeutic use , HIV Infections/complications , HIV Infections/drug therapy , Humans , SARS-CoV-2ABSTRACT
The pathogenesis of coronavirus disease 2019 (COVID-19) may be envisaged as the dynamic interaction between four vicious feedback loops chained or happening at once. These are the viral loop, the hyperinflammatory loop, the non-canonical renin-angiotensin system (RAS) axis loop, and the hypercoagulation loop. Severe acute respiratory syndrome (SARS)-coronavirus (CoV)-2 lights the wick by infecting alveolar epithelial cells (AECs) and downregulating the angiotensin converting enzyme-2 (ACE2)/angiotensin (Ang-1-7)/Mas1R axis. The viral feedback loop includes evading the host's innate response, uncontrolled viral replication, and turning on a hyperactive adaptative immune response. The inflammatory loop is composed of the exuberant inflammatory response feeding back until exploding in an actual cytokine storm. Downregulation of the ACE2/Ang-(1-7)/Mas1R axis leaves the lung without a critical defense mechanism and turns the scale to the inflammatory side of the RAS. The coagulation loop is a hypercoagulable state caused by the interplay between inflammation and coagulation in an endless feedback loop. The result is a hyperinflammatory and hypercoagulable state producing acute immune-mediated lung injury and eventually, adult respiratory distress syndrome.