Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Nature Machine Intelligence ; 4(1):5-10, 2022.
Article in English | ProQuest Central | ID: covidwho-1655672

ABSTRACT

For a third year in a row, we followed up with authors of several recent Comments and Perspectives in Nature Machine Intelligence about what happened after their article was published: how did the topic they wrote about develop, did they gain new insights, and what are their hopes and expectations for AI in 2022?

2.
Nature Machine Intelligence ; 3(3):184-186, 2021.
Article in English | ProQuest Central | ID: covidwho-1655659

ABSTRACT

The COVID-19 pandemic has highlighted key challenges for patient care and health provider safety. Adaptable robotic systems, with enhanced sensing, manipulation and autonomy capabilities could help address these challenges in future infectious disease outbreaks.

3.
Rob Auton Syst ; 148: 103922, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1550056

ABSTRACT

This article analyses data collected from press reports, social media, and the scientific literature on 338 instances of robots used explicitly in response to COVID-19 from 24 Jan, 2020, to 23 Jan, 2021, in 48 countries. The analysis was guided by four overarching questions: (1) What were robots used for in the COVID-19 response? (2) When were they used? (3) How did different countries innovate? and 4) Did having a national policy on robotics influence a country's innovation and insertion of robotics for COVID-19? The findings indicate that robots were used for six different sociotechnical work domains and 29 discrete use cases. When robots were used varied greatly on the country; although many countries did report an increase at the beginning of their first surge. To understand the findings of how innovation occurred, the data was examined through the lens of the technology's maturity according to NASA's Technical Readiness Assessment metrics. Through this lens, findings note that existing robots were used for more than 78% of the instances; slightly modified robots made up 10%; and truly novel robots or novel use cases constituted 12% of the instances. The findings clearly indicate that countries with a national robotics initiative were more likely to use robotics more often and for broader purposes. Finally, the dataset and analysis produces a broad set of implications that warrant further study and investigation. The results from this analysis are expected to be of value to the robotics and robotics policy community in preparing robots for rapid insertion into future disasters.

4.
Sci Robot ; 6(52)2021 03 31.
Article in English | MEDLINE | ID: covidwho-1209822

ABSTRACT

The world was unprepared for the COVID-19 pandemic, and recovery is likely to be a long process. Robots have long been heralded to take on dangerous, dull, and dirty jobs, often in environments that are unsuitable for humans. Could robots be used to fight future pandemics? We review the fundamental requirements for robotics for infectious disease management and outline how robotic technologies can be used in different scenarios, including disease prevention and monitoring, clinical care, laboratory automation, logistics, and maintenance of socioeconomic activities. We also address some of the open challenges for developing advanced robots that are application oriented, reliable, safe, and rapidly deployable when needed. Last, we look at the ethical use of robots and call for globally sustained efforts in order for robots to be ready for future outbreaks.


Subject(s)
Communicable Disease Control/trends , Communicable Diseases , Robotics/trends , COVID-19/prevention & control , Communicable Diseases/diagnosis , Communicable Diseases/therapy , Disinfection/trends , Humans , Machine Learning , Pandemics/prevention & control , Remote Sensing Technology/trends , Robotic Surgical Procedures/trends , Robotics/instrumentation , SARS-CoV-2 , User-Computer Interface
SELECTION OF CITATIONS
SEARCH DETAIL