Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
1.
Bradbury, Charlotte A. M. D. PhD, Lawler, Patrick R. M. D. M. P. H.; Stanworth, Simon J. M. D.; McVerry, Bryan J. M. D.; McQuilten, Zoe PhD, Higgins, Alisa M. PhD, Mouncey, Paul R. MSc, Al-Beidh, Farah PhD, Rowan, Kathryn M. PhD, Berry, Lindsay R. PhD, Lorenzi, Elizabeth PhD, Zarychanski, Ryan M. D. MSc, Arabi, Yaseen M. M. D.; Annane, Djillali M. D. PhD, Beane, Abi PhD, van Bentum-Puijk, Wilma MSc, Bhimani, Zahra M. P. H.; Bihari, Shailesh PhD, M Bonten, Marc J. M. D. PhD, Brunkhorst, Frank M. M. D. PhD, Buzgau, Adrian MSc, Buxton, Meredith PhD, Carrier, Marc M. D. MSc, Cheng, Allen C. Mbbs PhD, Cove, Matthew Mbbs, Detry, Michelle A. PhD, Estcourt, Lise J. MBBCh PhD, Fitzgerald, Mark PhD, Girard, Timothy D. M. D. Msci, Goligher, Ewan C. M. D. PhD, Goossens, Herman PhD, Haniffa, Rashan PhD, Hills, Thomas Mbbs PhD, Huang, David T. M. D. M. P. H.; Horvat, Christopher M. M. D.; Hunt, Beverley J. M. D. PhD, Ichihara, Nao M. D. M. P. H. PhD, Lamontagne, Francois M. D.; Leavis, Helen L. M. D. PhD, Linstrum, Kelsey M. M. S.; Litton, Edward M. D. PhD, Marshall, John C. M. D.; McAuley, Daniel F. M. D.; McGlothlin, Anna PhD, McGuinness, Shay P. M. D.; Middeldorp, Saskia M. D. PhD, Montgomery, Stephanie K. MSc, Morpeth, Susan C. M. D. PhD, Murthy, Srinivas M. D.; Neal, Matthew D. M. D.; Nichol, Alistair D. M. D. PhD, Parke, Rachael L. PhD, Parker, Jane C. B. N.; Reyes, Luis F. M. D. PhD, Saito, Hiroki M. D. M. P. H.; Santos, Marlene S. M. D. Mshs, Saunders, Christina T. PhD, Serpa-Neto, Ary PhD MSc M. D.; Seymour, Christopher W. M. D. MSc, Shankar-Hari, Manu M. D. PhD, Singh, Vanessa, Tolppa, Timo Mbbs, Turgeon, Alexis F. M. D. MSc, Turner, Anne M. M. P. H.; van de Veerdonk, Frank L. M. D. PhD, Green, Cameron MSc, Lewis, Roger J. M. D. PhD, Angus, Derek C. M. D. M. P. H.; McArthur, Colin J. M. D.; Berry, Scott PhD, G Derde, Lennie P. M. D. PhD, Webb, Steve A. M. D. PhD, Gordon, Anthony C. Mbbs M. D..
JAMA ; 327(13):1247, 2022.
Article in English | ProQuest Central | ID: covidwho-1801957

ABSTRACT

Importance The efficacy of antiplatelet therapy in critically ill patients with COVID-19 is uncertain. Objective To determine whether antiplatelet therapy improves outcomes for critically ill adults with COVID-19. Design, Setting, and Participants In an ongoing adaptive platform trial (REMAP-CAP) testing multiple interventions within multiple therapeutic domains, 1557 critically ill adult patients with COVID-19 were enrolled between October 30, 2020, and June 23, 2021, from 105 sites in 8 countries and followed up for 90 days (final follow-up date: July 26, 2021). Interventions Patients were randomized to receive either open-label aspirin (n = 565), a P2Y12 inhibitor (n = 455), or no antiplatelet therapy (control;n = 529). Interventions were continued in the hospital for a maximum of 14 days and were in addition to anticoagulation thromboprophylaxis. Main Outcomes and Measures The primary end point was organ support–free days (days alive and free of intensive care unit–based respiratory or cardiovascular organ support) within 21 days, ranging from −1 for any death in hospital (censored at 90 days) to 22 for survivors with no organ support. There were 13 secondary outcomes, including survival to discharge and major bleeding to 14 days. The primary analysis was a bayesian cumulative logistic model. An odds ratio (OR) greater than 1 represented improved survival, more organ support–free days, or both. Efficacy was defined as greater than 99% posterior probability of an OR greater than 1. Futility was defined as greater than 95% posterior probability of an OR less than 1.2 vs control. Intervention equivalence was defined as greater than 90% probability that the OR (compared with each other) was between 1/1.2 and 1.2 for 2 noncontrol interventions. Results The aspirin and P2Y12 inhibitor groups met the predefined criteria for equivalence at an adaptive analysis and were statistically pooled for further analysis. Enrollment was discontinued after the prespecified criterion for futility was met for the pooled antiplatelet group compared with control. Among the 1557 critically ill patients randomized, 8 patients withdrew consent and 1549 completed the trial (median age, 57 years;521 [33.6%] female). The median for organ support–free days was 7 (IQR, −1 to 16) in both the antiplatelet and control groups (median-adjusted OR, 1.02 [95% credible interval {CrI}, 0.86-1.23];95.7% posterior probability of futility). The proportions of patients surviving to hospital discharge were 71.5% (723/1011) and 67.9% (354/521) in the antiplatelet and control groups, respectively (median-adjusted OR, 1.27 [95% CrI, 0.99-1.62];adjusted absolute difference, 5% [95% CrI, −0.2% to 9.5%];97% posterior probability of efficacy). Among survivors, the median for organ support–free days was 14 in both groups. Major bleeding occurred in 2.1% and 0.4% of patients in the antiplatelet and control groups (adjusted OR, 2.97 [95% CrI, 1.23-8.28];adjusted absolute risk increase, 0.8% [95% CrI, 0.1%-2.7%];99.4% probability of harm). Conclusions and Relevance Among critically ill patients with COVID-19, treatment with an antiplatelet agent, compared with no antiplatelet agent, had a low likelihood of providing improvement in the number of organ support–free days within 21 days.

3.
BMJ Glob Health ; 7(4)2022 Apr.
Article in English | MEDLINE | ID: covidwho-1784809

ABSTRACT

OBJECTIVE: To document clinical trial data flow in global clinical trials published in major journals between 2013 and 2021 from Global South to Global North. DESIGN: Scoping analysis METHODS: We performed a search in Cochrane Central Register of Controlled Trials (CENTRAL) to retrieve randomised clinical trials published between 2013 and 2021 from The BMJ, BMJ Global Health, the Journal of the American Medical Association, the Lancet, Lancet Global Health and the New England Journal of Medicine. Studies were included if they involved recruitment and author affiliation across different country income groupings using World Bank definitions. The direction of data flow was extracted with a data collection tool using sites of trial recruitment as the starting point and the location of authors conducting statistical analysis as the ending point. RESULTS: Of 1993 records initially retrieved, 517 studies underwent abstract screening, 348 studies underwent full-text screening and 305 studies were included. Funders from high-income countries were the sole funders of the majority (82%) of clinical trials that recruited across income groupings. In 224 (73.4%) of all assessable studies, data flowed exclusively to authors affiliated with high-income countries or to a majority of authors affiliated with high-income countries for statistical analysis. Only six (3.2%) studies demonstrated data flow to lower middle-income countries and upper middle-income countries for analysis, with only one with data flow to a lower middle-income country. CONCLUSIONS: Global clinical trial data flow demonstrates a Global South to Global North trajectory. Policies should be re-examined to assess how data sharing across country income groupings can move towards a more equitable model.


Subject(s)
Global Health , Income , Humans , Mass Screening , United States
4.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-331066

ABSTRACT

Background: Acute kidney injury (AKI) is one of the most common and significant problems in patients with COVID-19. However, little is known about the incidence and impact of AKI occurring in the community or early in the hospital admission. The traditional KDIGO definition can fail to identify patients for whom hospitalization coincides with recovery of AKI as manifested by a decrease in serum creatinine (sCr). We hypothesized that an extended KDIGO definition, adapted from the International Society of Nephrology 0by25 studies, would identify more cases of AKI in patients with COVID-19 and that these may correspond to community-acquired AKI with similarly poor outcomes as previously reported in this population.   Methods and Findings: All individuals in the ISARIC cohort admitted to hospital with SARS-CoV-2 infection from February 15th, 2020, to February 1st, 2021, were included in the study. Data was collected and analysed for the duration of a patient’s admission. Incidence, staging and timing of AKI were evaluated using a traditional and extended KDIGO (eKDIGO) definition which incorporated a commensurate decrease in serum creatinine. Patients within eKDIGO diagnosed with AKI by a decrease in sCr were labelled as deKDIGO. Clinical characteristic and outcomes – intensive care unit (ICU) admission, invasive mechanical ventilation and in-hospital death - were compared for all three groups of patients. The relationship between eKDIGO AKI and in-hospital death was assessed using survival curves and logistic regression, adjusting for disease severity and AKI susceptibility. 75,670 patients from 54 countries were included in the final analysis cohort. Median length of admission was 12 days (IQR 7, 20). There were twice as many patients with AKI identified by eKDIGO than KDIGO (31.7 vs 16.8%). Those in the eKDIGO group had a greater proportion of stage 1 AKI (58% vs 36% in KDIGO patients). Peak AKI occurred early in the admission more frequently among eKDIGO than KDIGO patients. Compared to those without AKI, patients in the eKDIGO group had worse renal function on admission, more in-hospital complications, higher rates of ICU admission (54% vs 23%) invasive ventilation (45% vs 15%) and increased mortality (38% vs 19%). Patients in the eKDIGO group had a higher risk of in-hospital death than those without AKI (adjusted OR: 1.78, 95% confidence interval: 1.71-1.8, p-value < 0.001).  Mortality and rate of ICU admission were lower among deKDIGO than KDIGO patients (25% vs 50% death and 35% vs 70% ICU admission) but significantly higher when compared to patients with no AKI (25% vs 19% death and 35% vs 23% ICU admission) (all p values < 5x10-5). Limitations include ad hoc sCr sampling, exclusion of patients with less than two sCr measurements, and limited availability of sCr measurements prior to initiation of acute dialysis.   Conclusions: The use of an extended KDIGO definition to diagnose AKI in this population resulted in a significantly higher incidence rate compared to traditional KDIGO criteria. These additional cases of AKI appear to be occurring in the community or early in the hospital admission and are associated with worse outcomes than those without AKI.

5.
JAMA ; 327(13): 1247-1259, 2022 Apr 05.
Article in English | MEDLINE | ID: covidwho-1750260

ABSTRACT

Importance: The efficacy of antiplatelet therapy in critically ill patients with COVID-19 is uncertain. Objective: To determine whether antiplatelet therapy improves outcomes for critically ill adults with COVID-19. Design, Setting, and Participants: In an ongoing adaptive platform trial (REMAP-CAP) testing multiple interventions within multiple therapeutic domains, 1557 critically ill adult patients with COVID-19 were enrolled between October 30, 2020, and June 23, 2021, from 105 sites in 8 countries and followed up for 90 days (final follow-up date: July 26, 2021). Interventions: Patients were randomized to receive either open-label aspirin (n = 565), a P2Y12 inhibitor (n = 455), or no antiplatelet therapy (control; n = 529). Interventions were continued in the hospital for a maximum of 14 days and were in addition to anticoagulation thromboprophylaxis. Main Outcomes and Measures: The primary end point was organ support-free days (days alive and free of intensive care unit-based respiratory or cardiovascular organ support) within 21 days, ranging from -1 for any death in hospital (censored at 90 days) to 22 for survivors with no organ support. There were 13 secondary outcomes, including survival to discharge and major bleeding to 14 days. The primary analysis was a bayesian cumulative logistic model. An odds ratio (OR) greater than 1 represented improved survival, more organ support-free days, or both. Efficacy was defined as greater than 99% posterior probability of an OR greater than 1. Futility was defined as greater than 95% posterior probability of an OR less than 1.2 vs control. Intervention equivalence was defined as greater than 90% probability that the OR (compared with each other) was between 1/1.2 and 1.2 for 2 noncontrol interventions. Results: The aspirin and P2Y12 inhibitor groups met the predefined criteria for equivalence at an adaptive analysis and were statistically pooled for further analysis. Enrollment was discontinued after the prespecified criterion for futility was met for the pooled antiplatelet group compared with control. Among the 1557 critically ill patients randomized, 8 patients withdrew consent and 1549 completed the trial (median age, 57 years; 521 [33.6%] female). The median for organ support-free days was 7 (IQR, -1 to 16) in both the antiplatelet and control groups (median-adjusted OR, 1.02 [95% credible interval {CrI}, 0.86-1.23]; 95.7% posterior probability of futility). The proportions of patients surviving to hospital discharge were 71.5% (723/1011) and 67.9% (354/521) in the antiplatelet and control groups, respectively (median-adjusted OR, 1.27 [95% CrI, 0.99-1.62]; adjusted absolute difference, 5% [95% CrI, -0.2% to 9.5%]; 97% posterior probability of efficacy). Among survivors, the median for organ support-free days was 14 in both groups. Major bleeding occurred in 2.1% and 0.4% of patients in the antiplatelet and control groups (adjusted OR, 2.97 [95% CrI, 1.23-8.28]; adjusted absolute risk increase, 0.8% [95% CrI, 0.1%-2.7%]; 99.4% probability of harm). Conclusions and Relevance: Among critically ill patients with COVID-19, treatment with an antiplatelet agent, compared with no antiplatelet agent, had a low likelihood of providing improvement in the number of organ support-free days within 21 days. Trial Registration: ClinicalTrials.gov Identifier: NCT02735707.


Subject(s)
COVID-19 , Venous Thromboembolism , Adult , Anticoagulants/therapeutic use , Aspirin/adverse effects , Bayes Theorem , Critical Illness/therapy , Female , Hemorrhage/chemically induced , Humans , Middle Aged , Platelet Aggregation Inhibitors/adverse effects , Respiration, Artificial , Venous Thromboembolism/drug therapy
6.
ERJ Open Res ; 8(1)2022 Jan.
Article in English | MEDLINE | ID: covidwho-1690978

ABSTRACT

Due to the large number of patients with severe coronavirus disease 2019 (COVID-19), many were treated outside the traditional walls of the intensive care unit (ICU), and in many cases, by personnel who were not trained in critical care. The clinical characteristics and the relative impact of caring for severe COVID-19 patients outside the ICU is unknown. This was a multinational, multicentre, prospective cohort study embedded in the International Severe Acute Respiratory and Emerging Infection Consortium World Health Organization COVID-19 platform. Severe COVID-19 patients were identified as those admitted to an ICU and/or those treated with one of the following treatments: invasive or noninvasive mechanical ventilation, high-flow nasal cannula, inotropes or vasopressors. A logistic generalised additive model was used to compare clinical outcomes among patients admitted or not to the ICU. A total of 40 440 patients from 43 countries and six continents were included in this analysis. Severe COVID-19 patients were frequently male (62.9%), older adults (median (interquartile range (IQR), 67 (55-78) years), and with at least one comorbidity (63.2%). The overall median (IQR) length of hospital stay was 10 (5-19) days and was longer in patients admitted to an ICU than in those who were cared for outside the ICU (12 (6-23) days versus 8 (4-15) days, p<0.0001). The 28-day fatality ratio was lower in ICU-admitted patients (30.7% (5797 out of 18 831) versus 39.0% (7532 out of 19 295), p<0.0001). Patients admitted to an ICU had a significantly lower probability of death than those who were not (adjusted OR 0.70, 95% CI 0.65-0.75; p<0.0001). Patients with severe COVID-19 admitted to an ICU had significantly lower 28-day fatality ratio than those cared for outside an ICU.

7.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-307500

ABSTRACT

SARS-CoV-2 enters cells by binding to angiotensin-converting enzyme 2 (ACE2), and COVID-19 infection may therefore induce changes in the renin-angiotensin system (RAS). To determine the effects of COVID-19 on plasma RAS components, we measured plasma ACE, ACE2, and angiotensins I, (1-7), and II in 46 adults with COVID-19 at hospital admission and on days 2, 4, 7 and 14, compared to 50 blood donors (controls). We compared survivors vs. non-survivors, males vs. females, ventilated vs. not ventilated, and angiotensin receptor blocker (ARB) and angiotensin-converting enzyme (ACE) inhibitor-exposed vs. not exposed. At admission, COVID-19 patients had higher plasma levels of ACE (p=0.012), ACE2 (p=0.001) and angiotensin-(1-7) (p<0.001) than controls. Plasma ACE and ACE2 remained elevated for 14 days in COVID-19 patients, while plasma angiotensin-(1-7) decreased after 7 days. In adjusted analyses, plasma ACE was higher in males vs. females (p=0.042), and plasma angiotensin I was significantly lower in ventilated vs. non-ventilated patients (p=0.001). In summary, plasma ACE and ACE2 are increased for at least 14 days in patients with COVID-19 infection. Angiotensin-(1-7) levels are also elevated, but decline after 7 days. The results indicate dysregulation of the RAS with COVID-19, with increased circulating ACE2 throughout the course of infection. Clinical Trial Registration: https://clinicaltrials.gov/ Unique Identifier: NCT04510623

8.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-306446

ABSTRACT

Background: Risk factors associated with mortality in patients with coronavirus disease 2019 (COVID-19) on mechanical ventilation are still not fully elucidated. Thus, we aimed to identify patient-level factors, readily available at the bedside, associated with the risk of in-hospital mortality within 28 days from commencement of invasive mechanical ventilation (28-day IMV mortality) in patients with COVID-19. Methods: Prospective observational cohort study in 148 intensive care units in the global COVID-19 Critical Care Consortium . Patients with clinically suspected or laboratory confirmed COVID-19 infection admitted to the intensive care unit (ICU) from February 2 nd through December 29th, 2020, requiring IMV. No study-specific interventions were performed. Patient characteristics and clinical data were assessed upon ICU admission, the commencement of IMV and for 28 days thereafter. We primarily aimed to identify time-independent and time-dependent risk factors for 28-day IMV mortality. Results: : A total of 1713 patients were included in the survival analysis, 588 patients died in hospital within 28 days of commencing IMV (34.3%). Cox-regression analysis identified associations between the hazard of 28-day IMV mortality with age (HR 1.27 per 10-year increase in age, 95% CI 1.17 to 1.37, P<0.001), PEEP upon commencement of IMV (HR 0.78 per 5-cmH 2 O increase, 95% CI 0.66-0.93, P=0.005). Time-dependent parameters associated with 28-day IMV mortality were serum creatinine (HR 1.30 per doubling, 95% CI 1.19-1.42, P<0.001), lactate (HR 1.16 per doubling, 95% CI 1.06-1.27 P=0.001), PaCO 2 (HR 1.31 per doubling, 95% CI 1.05-1.64, P=0.015), pH (HR 0.82 per 0.1 increase, 95% CI 0.74-0.91, P<0.001), PaO 2 /FiO 2 (HR 0.56 per doubling, 95% CI 0.50-0.62, P<0.001) and mean arterial pressure (HR 0.92 per 10 mmHg increase, 95% CI 0.88-0.97, P=0.002). Conclusions: : This international study establishes that in mechanically ventilated patients with COVID-19, older age and clinically relevant variables monitored at the bedside are risk factors for 28-day IMV mortality. Further investigation is warranted to validate any causative roles these parameters might play in influencing clinical outcomes.

9.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-306445

ABSTRACT

Background: Heterogeneous respiratory system static compliance (C RS ) values and levels of hypoxemia in patients with novel coronavirus disease (COVID-19) requiring mechanical ventilation have been reported in previous small-case series or studies conducted at a national level. Methods We designed a retrospective observational cohort study with rapid data gathering from the international COVID-19 Critical Care Consortium study to comprehensively describe the impact of C RS on the ventilatory management and outcomes of COVID-19 patients on mechanical ventilation (MV), admitted to intensive care units (ICU) worldwide. Results We enrolled 318 COVID-19 patients enrolled into the study from January 14th through September 31th, 2020 in 19 countries and stratified into two C RS groups. C RS was calculated as: tidal volume/[airway plateau pressure-positive end-expiratory pressure (PEEP)] and available within 48 h from commencement of MV in 318 patients. Patients were mean ± SD of 58.0 ± 12.2, predominantly from Europe (54%) and males (68%). Median C RS (IQR) was 34.1 mL/cmH 2 O (26.5–45.5) and PaO 2 /FiO 2 was 119 mmHg (87.1–164) and was not correlated with C RS . Female sex presented lower C RS than in males (95% CI: -13.8 to -8.5 P < 0.001) and higher body mass index (34.7 ± 10.9 vs 29.1 ± 6.0, p < 0.001). Median (IQR) PEEP was 12 cmH 2 O (10–15), throughout the range of C RS , while median (IQR) driving pressure was 12.3 (10–15) cmH 2 O and significantly decreased as C RS improved (p < 0.001). No differences were found in comorbidities and clinical management between C RS strata. In addition, 28-day ICU mortality and hospital mortality did not differ between C RS groups. Conclusions This multicentre report provides a comprehensive account of C RS in COVID-19 patients on MV – predominantly males or overweight females, in their late 50 s – admitted to ICU during the first international outbreaks. Phenotypes associated with different C RS upon commencement of MV could not be identified. Trial documentation: Available at https://www.covid-critical.com/study. Trial registration ACTRN12620000421932.

10.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-305835

ABSTRACT

The Randomized Embedded Multifactorial Adaptive Platform (REMAP-CAP) adapted for COVID-19) trial is a global adaptive platform trial of hospitalised patients with COVID-19. We describe implementation in three countries under the umbrella of the Wellcome supported Low and Middle Income Country (LMIC) critical  care network: Collaboration for Research, Implementation and Training in Asia (CCA). The collaboration sought to overcome known barriers to multi centre-clinical trials in resource-limited settings. Methods described focused on six aspects of implementation: i, Strengthening an existing community of practice;ii, Remote study site recruitment, training and support;iii, Harmonising the REMAP CAP- COVID trial with existing care processes;iv, Embedding REMAP CAP- COVID case report form into the existing CCA registry platform, v, Context specific adaptation and data management;vi, Alignment with existing pandemic and critical care research in the CCA. Methods described here may enable other LMIC sites to participate as equal partners in international critical care trials of urgent public health importance, both during this pandemic and beyond.

11.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-322458

ABSTRACT

Background: Post-exposure prophylaxis (PEP) is a well-established strategy for the prevention of infectious diseases, in which recently exposed people take a short course of medication to prevent infection. The primary objective of the COVID-19 Ring-based Prevention Trial with lopinavir/ritonavir (CORIPREV-LR) is to evaluate the efficacy of a 14-day course of oral lopinavir/ritonavir as PEP against COVID-19 among individuals with a high-risk exposure to a confirmed case. Methods: : This is an open-label, multicenter, 1:1 cluster-randomized trial of LPV/r versus no intervention, using an adaptive approach to sample size calculation. Participants will be individuals aged >6 months with a high-risk exposure to a confirmed COVID-19 case within the past 7 days. A combination of remote and in-person study visits at days 1, 7, 14, 35 and 90 include comprehensive epidemiological, clinical, microbiologic and serologic sampling. The primary outcome is microbiologically confirmed COVID-19 infection within 14 days after exposure, defined as a positive respiratory tract specimen for SARS-CoV-2 by polymerase chain reaction. Secondary outcomes include safety, symptomatic COVID-19, seropositivity, hospitalization, respiratory failure requiring ventilator support, mortality, psychological impact, and health-related quality of life. Additional analyses will examine the impact of LPV/r on these outcomes in the subset of participants who test positive for SARS-CoV-2 at baseline. To detect a relative risk reduction of 40% with 80% power at α=0.05, assuming p 0 =15%, 5 contacts per case and intra-class correlation coefficient (ICC)=0.05, we require 110 clusters per arm, or 220 clusters overall and approximately 1220 enrollees after accounting for 10% loss-to-follow-up. We will modify the sample size target after 60 clusters, based on preliminary estimates of p0, ICC and cluster size and consider switching to an alternative drug after interim analyses and as new data emerges. The primary analysis will be a generalized linear mixed model with logit link to estimate the effect of LPV/r on the probability of infection. Discussion: Harnessing safe, existing drugs such as LPV/r as PEP could provide an important tool for control of the COVID-19 pandemic. Novel aspects of our design include the ring-based prevention approach, and the incorporation of remote strategies for conducting study visits and biospecimen collection. Trial registration: This trial was registered at www.clinicaltrials.gov (NCT04321174) on March 25, 2020. https://clinicaltrials.gov/ct2/show/NCT04321174

12.
Open Forum Infect Dis ; 9(3): ofac008, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1684769

ABSTRACT

Background: Several outpatient coronavirus disease 2019 (COVID-19) therapies have reduced hospitalization in randomized controlled trials. The choice of therapy may depend on drug efficacy, toxicity, pricing, availability, and available infrastructure. To facilitate comparative decision-making, we evaluated the efficacy of each treatment in clinical trials and estimated the cost per hospitalization prevented. Methods: Wherever possible, we obtained relative risk for hospitalization from published randomized controlled trials. Otherwise, we extracted data from press releases, conference abstracts, government submissions, or preprints. If there was >1 study, the results were meta-analyzed. Using relative risk, we estimated the number needed to treat (NNT), assuming a baseline hospitalization risk of 5%, and compared the cost per hospitalization prevented with the estimate for an average Medicare COVID-19 hospitalization ($21 752). Drug pricing was estimated from GoodRx, from government purchases, or manufacturer estimates. Administrative and societal costs were not included. Results will be updated online as new studies emerge and/or final numbers become available. Results: At a 5% risk of hospitalization, the estimated NNT was 80 for fluvoxamine, 91 for colchicine, 72 for inhaled corticosteroids, 24 for nirmatrelvir/ritonavir, 50 for molnupiravir, 28 for remdesivir, 25 for sotrovimab, 29 for casirivimab/imdevimab, and 29 for bamlanivimab/etesevimab. For drug cost per hospitalization prevented, colchicine, fluvoxamine, inhaled corticosteroids, and nirmatrelvir/ritonavir were below the Medicare estimated hospitalization cost. Conclusions: Many countries are fortunate to have access to several effective outpatient therapies to prevent COVID-19 hospitalization. Given differences in efficacy, toxicity, cost, and administration complexity, this assessment serves as one means to frame treatment selection.

13.
J Proteome Res ; 21(4): 975-992, 2022 Apr 01.
Article in English | MEDLINE | ID: covidwho-1683912

ABSTRACT

The host response to COVID-19 pathophysiology over the first few days of infection remains largely unclear, especially the mechanisms in the blood compartment. We report on a longitudinal proteomic analysis of acute-phase COVID-19 patients, for which we used blood plasma, multiple reaction monitoring with internal standards, and data-independent acquisition. We measured samples on admission for 49 patients, of which 21 had additional samples on days 2, 4, 7, and 14 after admission. We also measured 30 externally obtained samples from healthy individuals for comparison at baseline. The 31 proteins differentiated in abundance between acute COVID-19 patients and healthy controls belonged to acute inflammatory response, complement activation, regulation of inflammatory response, and regulation of protein activation cascade. The longitudinal analysis showed distinct profiles revealing increased levels of multiple lipid-associated functions, a rapid decrease followed by recovery for complement activation, humoral immune response, and acute inflammatory response-related proteins, and level fluctuation in the regulation of smooth muscle cell proliferation, secretory mechanisms, and platelet degranulation. Three proteins were differentiated between survivors and nonsurvivors. Finally, increased levels of fructose-bisphosphate aldolase B were determined in patients with exposure to angiotensin receptor blockers versus decreased levels in those exposed to angiotensin-converting enzyme inhibitors. Data are available via ProteomeXchange PXD029437.


Subject(s)
COVID-19 , Biomarkers , Humans , Plasma , Proteomics , Retrospective Studies
14.
JAMA ; 327(1): 67-74, 2022 01 04.
Article in English | MEDLINE | ID: covidwho-1653099

ABSTRACT

Platform trials are a type of randomized clinical trial that allow simultaneous comparison of multiple intervention groups against a single control group that serves as a common control based on a prespecified interim analysis plan. The platform trial design enables introduction of new interventions after the trial is initiated to evaluate multiple interventions in an ongoing manner using a single overarching protocol called a master (or core) protocol. When multiple treatment candidates are available, rapid scientific therapeutic discoveries may be made. Platform trials have important potential advantages in creating an efficient trial infrastructure that can help address critical clinical questions as the evidence evolves. Platform trials have recently been used in investigations of evolving therapies for patients with COVID-19. The purpose of this Users' Guide to the Medical Literature is to describe fundamental concepts of platform trials and master protocols and review issues in the conduct and interpretation of these studies. This Users' Guide is intended to help clinicians and readers understand articles reporting on interventions evaluated using platform trial designs.


Subject(s)
COVID-19 , Humans , SARS-CoV-2
15.
ERJ open research ; 2021.
Article in English | EuropePMC | ID: covidwho-1610380

ABSTRACT

Due to the large number of patients with severe COVID-19, many were treated outside of the traditional walls of the ICU, and in many cases, by personnel who were not trained in critical care. The clinical characteristics and the relative impact of caring for severe COVID-19 patients outside of the ICU is unknown. This was a multinational, multicentre, prospective cohort study embedded in the ISARIC WHO COVID-19 platform. Severe COVID-19 patients were identified as those admitted to an ICU and/or those treated with one of the following treatments: invasive or non-invasive mechanical ventilation, high-flow nasal cannula, inotropes, and vasopressors. A logistic Generalised Additive Model was used to compare clinical outcomes among patients admitted and not to the ICU. A total of 40 440 patients from 43 countries and six continents were included in this analysis. Severe COVID-19 patients were frequently male (62.9%), older adults (median [IQR], 67 years [55, 78]), and with at least one comorbidity (63.2%). The overall median (IQR) length of hospital stay was 10 days (5–19) and was longer in patients admitted to an ICU than in those that were cared for outside of ICU (12 [6–23] versus 8 [4–15] days, p<0.0001). The 28-day fatality ratio was lower in ICU-admitted patients (30.7% [5797/18831] versus 39.0% [7532/19295], p<0.0001). Patients admitted to an ICU had a significantly lower probability of death than those who were not (adjusted OR:0.70, 95%CI: 0.65-0.75, p<0.0001). Patients with severe COVID-19 admitted to an ICU had significantly lower 28-day fatality ratio than those cared for outside of an ICU.

16.
Lancet Infect Dis ; 22(4): e102-e107, 2022 04.
Article in English | MEDLINE | ID: covidwho-1598293

ABSTRACT

People with COVID-19 might have sustained postinfection sequelae. Known by a variety of names, including long COVID or long-haul COVID, and listed in the ICD-10 classification as post-COVID-19 condition since September, 2020, this occurrence is variable in its expression and its impact. The absence of a globally standardised and agreed-upon definition hampers progress in characterisation of its epidemiology and the development of candidate treatments. In a WHO-led Delphi process, we engaged with an international panel of 265 patients, clinicians, researchers, and WHO staff to develop a consensus definition for this condition. 14 domains and 45 items were evaluated in two rounds of the Delphi process to create a final consensus definition for adults: post-COVID-19 condition occurs in individuals with a history of probable or confirmed SARS-CoV-2 infection, usually 3 months from the onset, with symptoms that last for at least 2 months and cannot be explained by an alternative diagnosis. Common symptoms include, but are not limited to, fatigue, shortness of breath, and cognitive dysfunction, and generally have an impact on everyday functioning. Symptoms might be new onset following initial recovery from an acute COVID-19 episode or persist from the initial illness. Symptoms might also fluctuate or relapse over time. A separate definition might be applicable for children. Although the consensus definition is likely to change as knowledge increases, this common framework provides a foundation for ongoing and future studies of epidemiology, risk factors, clinical characteristics, and therapy.


Subject(s)
COVID-19 , Adult , COVID-19/complications , Child , Consensus , Delphi Technique , Humans , SARS-CoV-2
19.
Can J Anaesth ; 67(9): 1217-1248, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-1536371

ABSTRACT

PURPOSE: We conducted two World Health Organization-commissioned reviews to inform use of high-flow nasal cannula (HFNC) in patients with coronavirus disease (COVID-19). We synthesized the evidence regarding efficacy and safety (review 1), as well as risks of droplet dispersion, aerosol generation, and associated transmission (review 2) of viral products. SOURCE: Literature searches were performed in Ovid MEDLINE, Embase, Web of Science, Chinese databases, and medRxiv. Review 1: we synthesized results from randomized-controlled trials (RCTs) comparing HFNC to conventional oxygen therapy (COT) in critically ill patients with acute hypoxemic respiratory failure. Review 2: we narratively summarized findings from studies evaluating droplet dispersion, aerosol generation, or infection transmission associated with HFNC. For both reviews, paired reviewers independently conducted screening, data extraction, and risk of bias assessment. We evaluated certainty of evidence using GRADE methodology. PRINCIPAL FINDINGS: No eligible studies included COVID-19 patients. Review 1: 12 RCTs (n = 1,989 patients) provided low-certainty evidence that HFNC may reduce invasive ventilation (relative risk [RR], 0.85; 95% confidence interval [CI], 0.74 to 0.99) and escalation of oxygen therapy (RR, 0.71; 95% CI, 0.51 to 0.98) in patients with respiratory failure. Results provided no support for differences in mortality (moderate certainty), or in-hospital or intensive care length of stay (moderate and low certainty, respectively). Review 2: four studies evaluating droplet dispersion and three evaluating aerosol generation and dispersion provided very low certainty evidence. Two simulation studies and a crossover study showed mixed findings regarding the effect of HFNC on droplet dispersion. Although two simulation studies reported no associated increase in aerosol dispersion, one reported that higher flow rates were associated with increased regions of aerosol density. CONCLUSIONS: High-flow nasal cannula may reduce the need for invasive ventilation and escalation of therapy compared with COT in COVID-19 patients with acute hypoxemic respiratory failure. This benefit must be balanced against the unknown risk of airborne transmission.


RéSUMé: OBJECTIF: Nous avons réalisé deux comptes rendus sur commande de l'Organisation mondiale de la santé pour guider l'utilisation de canules nasales à haut débit (CNHD) chez les patients ayant contracté le coronavirus (COVID-19). Nous avons synthétisé les données probantes concernant leur efficacité et leur innocuité (compte rendu 1), ainsi que les risques de dispersion des gouttelettes, de génération d'aérosols, et de transmission associée d'éléments viraux (compte rendu 2). SOURCE: Des recherches de littérature ont été réalisées dans les bases de données Ovid MEDLINE, Embase, Web of Science, ainsi que dans les bases de données chinoises et medRxiv. Compte rendu 1 : nous avons synthétisé les résultats d'études randomisées contrôlées (ERC) comparant les CNHD à une oxygénothérapie conventionnelle chez des patients en état critique atteints d'insuffisance respiratoire hypoxémique aiguë. Compte rendu 2 : nous avons résumé sous forme narrative les constatations d'études évaluant la dispersion de gouttelettes, la génération d'aérosols ou la transmission infectieuse associées aux CNHD. Pour les deux comptes rendus, des réviseurs appariés ont réalisé la sélection des études, l'extraction des données et l'évaluation du risque de biais de manière indépendante. Nous avons évalué la certitude des données probantes en nous fondant sur la méthodologie GRADE. CONSTATATIONS PRINCIPALES: Aucune étude éligible n'incluait de patients atteints de COVID-19. Compte rendu 1 : 12 ERC (n = 1989 patients) ont fourni des données probantes de certitude faible selon lesquelles les CNHD réduiraient la ventilation invasive (risque relatif [RR], 0,85; intervalle de confiance [IC] 95 %, 0,74 à 0,99) et l'intensification de l'oxygénothérapie (RR, 0,71; IC 95 %, 0,51 à 0,98) chez les patients atteints d'insuffisance respiratoire. Les résultats n'ont pas démontré de différences en matière de mortalité (certitude modérée), ni de durée du séjour hospitalier ou à l'unité des soins intensifs (certitude modérée et faible, respectivement). Compte rendu 2 : quatre études évaluant la dispersion de gouttelettes et trois évaluant la génération et la dispersion d'aérosols ont fourni des données probantes de très faible certitude. Deux études de simulation et une étude croisée ont donné des résultats mitigés quant à l'effet des CNHD sur la dispersion des gouttelettes. Bien que deux études de simulation n'aient rapporté aucune augmentation associée concernant la dispersion d'aérosols, l'une a rapporté que des taux de débit plus élevés étaient associés à des régions à densité d'aérosols élevée plus grandes. CONCLUSION: Les canules nasales à haut débit pourraient réduire la nécessité de recourir à la ventilation invasive et l'escalade des traitements par rapport à l'oxygénothérapie conventionnelle chez les patients atteints de COVID-19 souffrant d'insuffisance respiratoire hypoxémique aiguë. Cet avantage doit être soupesé contre le risque inconnu de transmission atmosphérique.


Subject(s)
Coronavirus Infections/therapy , Oxygen Inhalation Therapy/methods , Pneumonia, Viral/therapy , Respiratory Insufficiency/therapy , Aerosols , COVID-19 , Cannula , Coronavirus Infections/complications , Coronavirus Infections/mortality , Humans , Pandemics , Pneumonia, Viral/complications , Pneumonia, Viral/mortality , Randomized Controlled Trials as Topic , Respiratory Insufficiency/physiopathology , Respiratory Insufficiency/virology
20.
Crit Care Explor ; 3(11): e0567, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1515112

ABSTRACT

Factors associated with mortality in coronavirus disease 2019 patients on invasive mechanical ventilation are still not fully elucidated. OBJECTIVES: To identify patient-level parameters, readily available at the bedside, associated with the risk of in-hospital mortality within 28 days from commencement of invasive mechanical ventilation or coronavirus disease 2019. DESIGN SETTING AND PARTICIPANTS: Prospective observational cohort study by the global Coronavirus Disease 2019 Critical Care Consortium. Patients with laboratory-confirmed coronavirus disease 2019 requiring invasive mechanical ventilation from February 2, 2020, to May 15, 2021. MAIN OUTCOMES AND MEASURES: Patient characteristics and clinical data were assessed upon ICU admission, the commencement of invasive mechanical ventilation and for 28 days thereafter. We primarily aimed to identify time-independent and time-dependent risk factors for 28-day invasive mechanical ventilation mortality. RESULTS: One-thousand five-hundred eighty-seven patients were included in the survival analysis; 588 patients died in hospital within 28 days of commencing invasive mechanical ventilation (37%). Cox-regression analysis identified associations between the hazard of 28-day invasive mechanical ventilation mortality with age (hazard ratio, 1.26 per 10-yr increase in age; 95% CI, 1.16-1.37; p < 0.001), positive end-expiratory pressure upon commencement of invasive mechanical ventilation (hazard ratio, 0.81 per 5 cm H2O increase; 95% CI, 0.67-0.97; p = 0.02). Time-dependent parameters associated with 28-day invasive mechanical ventilation mortality were serum creatinine (hazard ratio, 1.28 per doubling; 95% CI, 1.15-1.41; p < 0.001), lactate (hazard ratio, 1.22 per doubling; 95% CI, 1.11-1.34; p < 0.001), Paco2 (hazard ratio, 1.63 per doubling; 95% CI, 1.19-2.25; p < 0.001), pH (hazard ratio, 0.89 per 0.1 increase; 95% CI, 0.8-14; p = 0.041), Pao2/Fio2 (hazard ratio, 0.58 per doubling; 95% CI, 0.52-0.66; p < 0.001), and mean arterial pressure (hazard ratio, 0.92 per 10 mm Hg increase; 95% CI, 0.88-0.97; p = 0.003). CONCLUSIONS AND RELEVANCE: This international study suggests that in patients with coronavirus disease 2019 on invasive mechanical ventilation, older age and clinically relevant variables monitored at baseline or sequentially during the course of invasive mechanical ventilation are associated with 28-day invasive mechanical ventilation mortality hazard. Further investigation is warranted to validate any causative roles these parameters might play in influencing clinical outcomes.

SELECTION OF CITATIONS
SEARCH DETAIL