Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Add filters

Document Type
Year range
Indian Journal of Biochemistry and Biophysics ; 59(11):1088-1105, 2022.
Article in English | Scopus | ID: covidwho-2146952


SARS-CoV-2 pandemic has become a major threat to human healthcare and world economy. Due to the rapid spreading and deadly nature of infection, we are in a situation to develop quick therapeutics to combat SARS-CoV-2. In this study, we have adopted a multi-level scoring approach to identify multi-targeting potency of bioactive compounds in selected medicinal plants and compared its efficacy with two reference drugs, Nafamostat and Acalabrutinib which are under clinical trials to treat SARS-CoV-2. In particular, we employ molecular docking and implicit solvent free energy calculations (as implemented in the Molecular Mechanics-Generalized Born Surface Area approach) and QM fragmentation approach for validating the potency of bioactive compounds from the selected medicinal plants against four different viral targets and one human receptor (Angiotensin-converting enzyme 2-ACE-2) which facilitates the SARS-CoV-2 entry into the cell. The protein targets considered for the study are viral 3CL main protease (3CLpro), papain-like protease (PLpro), RNA dependent RNA polymerase (RdRp), and viral spike protein-human hACE-2 complex (Spike:hACE2) including human protein target (hACE-2). Herein, there liable multi-level scoring approach was used to validate the mechanism behind the multi-targeting potency of selected phytochemicals from medicinal plants. The present study evidenced that the phytochemicals Chebulagic acid, Stigmosterol, Repandusinic acid and Geranin exhibited efficient inhibitory activity against PLpro while Chebulagic acid was highly active against 3CLpro. Chebulagic acid and Geranin also showed excellent target specific activity against RdRp. Luteolin, Quercetin, Chrysoeriol and Repandusinic acid inhibited the interaction of viral spike protein with human ACE-2 receptor. Moreover, Piperlonguminine and Piperine displayed significant inhibitory activity against human ACE-2 receptor. Therefore, the identified compounds namely Chebulagic acid, Geranin and Repandusinic acid can serve as potent multi-targeting phytomedicine for treating COVID-19. © 2022, National Institute of Science Communication and Policy Research. All rights reserved.

Journal of the Indian Chemical Society ; 98(10):11, 2021.
Article in English | Web of Science | ID: covidwho-1510018


COVID-19 is considered as a major public health problem caused by the SARS CoV-2. This Viral infection is known to induce worldwide pandemic in short period of time. Emerging evidence suggested that the transmission control and drug therapy may influence the preventive measures extensively as the host surrounding environment and pathogenic mechanism may contribute to the pandemic condition earlier in COVID-19 disease. Although, several animals identified as reservoir to date, however human-to-human transmission is well documented. Human beings are sustaining the virus in the communities and act as an amplifier of the virus. Human activities i.e., living with the patient, touching patient waste etc. in the surrounding of active patients or asymptomatic persons cause significant risk factors for transmission. On the other hand, drug target and mechanism to destroy the virus or virus inhibition depends on diversified approaches of drugs and different target for virus life cycle. This article describes the sustainable chemical preventive models understanding, requirements, technology adaptation and the implementation strategies in these pandemic-like situations. As the outbreak progresses, healthcare models focused on transmission control through disinfections and sanitization based on risk calculations. Identification of the most suitable target of drugs and regional control model of transmission are of high priority. In the early stages of an outbreak, availability of epidemiological information is important to encourage preventive measures efforts by public health authorities and provide robust evidence to guide interventions. Here, we have discussed the level of adaptations in technology that research professionals display toward their public health preventive models. We should compile a representative data set of adaptations that humans can consider for transmission control and adopt for viruses and their hosts. Overall, there are many aspects of the chemical science and technology in virus preventive measures. Herein, the most recent advances in this context are discussed, and the possible reasons behind the sustainable preventive model are presented. This kind of sustainable preventive model having adaptation and implementation with green chemistry system will reduce the shedding of the virus into the community by eco-friendly methods, and thus the risk of transmission and infection progression can be mitigated.