Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Allergy ; 78(3): 639-662, 2023 03.
Article in English | MEDLINE | ID: covidwho-20233683

ABSTRACT

The current monkeypox disease (MPX) outbreak constitutes a new threat and challenge for our society. With more than 55,000 confirmed cases in 103 countries, World Health Organization declared the ongoing MPX outbreak a Public Health Emergency of International Concern (PHEIC) on July 23, 2022. The current MPX outbreak is the largest, most widespread, and most serious since the diagnosis of the first case of MPX in 1970 in the Democratic Republic of the Congo (DRC), a country where MPX is an endemic disease. Throughout history, there have only been sporadic and self-limiting outbreaks of MPX outside Africa, with a total of 58 cases described from 2003 to 2021. This figure contrasts with the current outbreak of 2022, in which more than 55,000 cases have been confirmed in just 4 months. MPX is, in most cases, self-limiting; however, severe clinical manifestations and complications have been reported. Complications are usually related to the extent of virus exposure and patient health status, generally affecting children, pregnant women, and immunocompromised patients. The expansive nature of the current outbreak leaves many questions that the scientific community should investigate and answer in order to understand this phenomenon better and prevent new threats in the future. In this review, 50 questions regarding monkeypox virus (MPXV) and the current MPX outbreak were answered in order to provide the most updated scientific information and to explore the potential causes and consequences of this new health threat.


Subject(s)
Monkeypox virus , Monkeypox , Child , Female , Humans , Pregnancy , Disease Outbreaks , Monkeypox/diagnosis , Monkeypox/epidemiology
3.
Immunity ; 56(4): 864-878.e4, 2023 04 11.
Article in English | MEDLINE | ID: covidwho-2260018

ABSTRACT

T cells are a critical component of the response to SARS-CoV-2, but their kinetics after infection and vaccination are insufficiently understood. Using "spheromer" peptide-MHC multimer reagents, we analyzed healthy subjects receiving two doses of the Pfizer/BioNTech BNT162b2 vaccine. Vaccination resulted in robust spike-specific T cell responses for the dominant CD4+ (HLA-DRB1∗15:01/S191) and CD8+ (HLA-A∗02/S691) T cell epitopes. Antigen-specific CD4+ and CD8+ T cell responses were asynchronous, with the peak CD4+ T cell responses occurring 1 week post the second vaccination (boost), whereas CD8+ T cells peaked 2 weeks later. These peripheral T cell responses were elevated compared with COVID-19 patients. We also found that previous SARS-CoV-2 infection resulted in decreased CD8+ T cell activation and expansion, suggesting that previous infection can influence the T cell response to vaccination.


Subject(s)
COVID-19 , Vaccines , Humans , CD8-Positive T-Lymphocytes , BNT162 Vaccine , SARS-CoV-2 , Vaccination , Antibodies, Viral
4.
Immunity ; 2023.
Article in English | EuropePMC | ID: covidwho-2260017

ABSTRACT

T cells are a critical component of the response to SARS-CoV-2, but their kinetics after infection and vaccination are insufficiently understood. Using "spheromer” peptide-MHC multimer reagents, we analyzed healthy subjects receiving two doses of the Pfizer/BioNTech BNT162b2 vaccine. Vaccination resulted in robust Spike-specific T cell responses for the dominant CD4+ (HLA-DRB1∗15:01/S191) and CD8+ (HLA-A∗02/S691) T cell epitopes. Antigen-specific CD4+ and CD8+ T cell responses were asynchronous, with the peak CD4+ T cell responses occurring one week post the second vaccination (boost), whereas CD8+ T cells peaked two weeks later. These peripheral T cell responses were elevated compared to COVID-19 patients. We also found that prior SARS-CoV-2 infection resulted in decreased CD8+ T cell activation and expansion, suggesting that prior infection can influence the T cell response to vaccination. Graphical Our understanding of T cell responses in COVID-19 and vaccination is incomplete. Gao et al. examine SARS-CoV-2-specific T cell responses to infection and vaccination, revealing disparate kinetics between CD4+ and CD8+ T cells. Furthermore, compared to vaccination alone, circulating CD8+ T cells are attenuated during infection and in subsequent vaccination.

6.
J Allergy Clin Immunol ; 2022 Nov 03.
Article in English | MEDLINE | ID: covidwho-2235736

ABSTRACT

BACKGROUND: The global epidemiology of asthma among patients with coronavirus disease 2019 (COVID-19) presents striking geographic differences, defining prevalence zones of high and low co-occurrence of asthma and COVID-19. OBJECTIVE: We aimed to compare asthma prevalence among hospitalized patients with COVID-19 in major global hubs across the world by applying common inclusion criteria and definitions. METHODS: We built a network of 6 academic hospitals in Stanford (Stanford University)/the United States; Frankfurt (Goethe University), Giessen (Justus Liebig University), and Marburg (Philipps University)/Germany; and Moscow (Clinical Hospital 52 in collaboration with Sechenov University)/Russia. We collected clinical and laboratory data for patients hospitalized due to COVID-19. RESULTS: Asthmatic individuals were overrepresented among hospitalized patients with COVID-19 in Stanford and underrepresented in Moscow and Germany as compared with their prevalence among adults in the local community. Asthma prevalence was similar among patients hospitalized in an intensive care unit and patients hospitalized in other than an intensive care unit, which implied that the risk for development of severe COVID-19 was not higher among asthmatic patients. The numbers of males and comorbidities were higher among patients with COVID-19 in the Stanford cohort, and the most frequent comorbidities among these patients with asthma were other chronic inflammatory airway disorders such as chronic obstructive pulmonary disease. CONCLUSION: The observed disparity in COVID-19-associated risk among asthmatic patients across countries and continents is connected to the varying prevalence of underlying comorbidities, particularly chronic obstructive pulmonary disease.

7.
Nat Rev Immunol ; 22(11): 651-652, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2113877
8.
Science ; 376(6590): eabi9591, 2022 04 15.
Article in English | MEDLINE | ID: covidwho-2088383

ABSTRACT

In this work, we find that CD8+ T cells expressing inhibitory killer cell immunoglobulin-like receptors (KIRs) are the human equivalent of Ly49+CD8+ regulatory T cells in mice and are increased in the blood and inflamed tissues of patients with a variety of autoimmune diseases. Moreover, these CD8+ T cells efficiently eliminated pathogenic gliadin-specific CD4+ T cells from the leukocytes of celiac disease patients in vitro. We also find elevated levels of KIR+CD8+ T cells, but not CD4+ regulatory T cells, in COVID-19 patients, correlating with disease severity and vasculitis. Selective ablation of Ly49+CD8+ T cells in virus-infected mice led to autoimmunity after infection. Our results indicate that in both species, these regulatory CD8+ T cells act specifically to suppress pathogenic T cells in autoimmune and infectious diseases.


Subject(s)
Autoimmune Diseases , COVID-19 , Animals , CD8-Positive T-Lymphocytes , Humans , Mice , Receptors, KIR , T-Lymphocytes, Regulatory
9.
Microbiol Spectr ; : e0230522, 2022 Oct 17.
Article in English | MEDLINE | ID: covidwho-2078747

ABSTRACT

Clinicians in the emergency department (ED) face challenges in concurrently assessing patients with suspected COVID-19 infection, detecting bacterial coinfection, and determining illness severity since current practices require separate workflows. Here, we explore the accuracy of the IMX-BVN-3/IMX-SEV-3 29 mRNA host response classifiers in simultaneously detecting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and bacterial coinfections and predicting clinical severity of COVID-19. A total of 161 patients with PCR-confirmed COVID-19 (52.2% female; median age, 50.0 years; 51% hospitalized; 5.6% deaths) were enrolled at the Stanford Hospital ED. RNA was extracted (2.5 mL whole blood in PAXgene blood RNA), and 29 host mRNAs in response to the infection were quantified using Nanostring nCounter. The IMX-BVN-3 classifier identified SARS-CoV-2 infection in 151 patients with a sensitivity of 93.8%. Six of 10 patients undetected by the classifier had positive COVID tests more than 9 days prior to enrollment, and the remaining patients oscillated between positive and negative results in subsequent tests. The classifier also predicted that 6 (3.7%) patients had a bacterial coinfection. Clinical adjudication confirmed that 5/6 (83.3%) of the patients had bacterial infections, i.e., Clostridioides difficile colitis (n = 1), urinary tract infection (n = 1), and clinically diagnosed bacterial infections (n = 3), for a specificity of 99.4%. Two of 101 (2.8%) patients in the IMX-SEV-3 "Low" severity classification and 7/60 (11.7%) in the "Moderate" severity classification died within 30 days of enrollment. IMX-BVN-3/IMX-SEV-3 classifiers accurately identified patients with COVID-19 and bacterial coinfections and predicted patients' risk of death. A point-of-care version of these classifiers, under development, could improve ED patient management, including more accurate treatment decisions and optimized resource utilization. IMPORTANCE We assay the utility of the single-test IMX-BVN-3/IMX-SEV-3 classifiers that require just 2.5 mL of patient blood in concurrently detecting viral and bacterial infections as well as predicting the severity and 30-day outcome from the infection. A point-of-care device, in development, will circumvent the need for blood culturing and drastically reduce the time needed to detect an infection. This will negate the need for empirical use of broad-spectrum antibiotics and allow for antibiotic use stewardship. Additionally, accurate classification of the severity of infection and the prediction of 30-day severe outcomes will allow for appropriate allocation of hospital resources.

10.
EBioMedicine ; 83: 104208, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-2035962

ABSTRACT

BACKGROUND: Better understanding of the association between characteristics of patients hospitalized with coronavirus disease 2019 (COVID-19) and outcome is needed to further improve upon patient management. METHODS: Immunophenotyping Assessment in a COVID-19 Cohort (IMPACC) is a prospective, observational study of 1164 patients from 20 hospitals across the United States. Disease severity was assessed using a 7-point ordinal scale based on degree of respiratory illness. Patients were prospectively surveyed for 1 year after discharge for post-acute sequalae of COVID-19 (PASC) through quarterly surveys. Demographics, comorbidities, radiographic findings, clinical laboratory values, SARS-CoV-2 PCR and serology were captured over a 28-day period. Multivariable logistic regression was performed. FINDINGS: The median age was 59 years (interquartile range [IQR] 20); 711 (61%) were men; overall mortality was 14%, and 228 (20%) required invasive mechanical ventilation. Unsupervised clustering of ordinal score over time revealed distinct disease course trajectories. Risk factors associated with prolonged hospitalization or death by day 28 included age ≥ 65 years (odds ratio [OR], 2.01; 95% CI 1.28-3.17), Hispanic ethnicity (OR, 1.71; 95% CI 1.13-2.57), elevated baseline creatinine (OR 2.80; 95% CI 1.63- 4.80) or troponin (OR 1.89; 95% 1.03-3.47), baseline lymphopenia (OR 2.19; 95% CI 1.61-2.97), presence of infiltrate by chest imaging (OR 3.16; 95% CI 1.96-5.10), and high SARS-CoV2 viral load (OR 1.53; 95% CI 1.17-2.00). Fatal cases had the lowest ratio of SARS-CoV-2 antibody to viral load levels compared to other trajectories over time (p=0.001). 589 survivors (51%) completed at least one survey at follow-up with 305 (52%) having at least one symptom consistent with PASC, most commonly dyspnea (56% among symptomatic patients). Female sex was the only associated risk factor for PASC. INTERPRETATION: Integration of PCR cycle threshold, and antibody values with demographics, comorbidities, and laboratory/radiographic findings identified risk factors for 28-day outcome severity, though only female sex was associated with PASC. Longitudinal clinical phenotyping offers important insights, and provides a framework for immunophenotyping for acute and long COVID-19. FUNDING: NIH.


Subject(s)
COVID-19 , COVID-19/complications , Creatinine , Female , Hospitalization , Humans , Male , Phenotype , Prospective Studies , RNA, Viral , SARS-CoV-2 , Severity of Illness Index , Troponin , Post-Acute COVID-19 Syndrome
12.
JCI Insight ; 7(13)2022 07 08.
Article in English | MEDLINE | ID: covidwho-1932894

ABSTRACT

BACKGROUNDProlonged symptoms after SARS-CoV-2 infection are well documented. However, which factors influence development of long-term symptoms, how symptoms vary across ethnic groups, and whether long-term symptoms correlate with biomarkers are points that remain elusive.METHODSAdult SARS-CoV-2 reverse transcription PCR-positive (RT-PCR-positive) patients were recruited at Stanford from March 2020 to February 2021. Study participants were seen for in-person visits at diagnosis and every 1-3 months for up to 1 year after diagnosis; they completed symptom surveys and underwent blood draws and nasal swab collections at each visit.RESULTSOur cohort (n = 617) ranged from asymptomatic to critical COVID-19 infections. In total, 40% of participants reported at least 1 symptom associated with COVID-19 six months after diagnosis. Median time from diagnosis to first resolution of all symptoms was 44 days; median time from diagnosis to sustained symptom resolution with no recurring symptoms for 1 month or longer was 214 days. Anti-nucleocapsid IgG level in the first week after positive RT-PCR test and history of lung disease were associated with time to sustained symptom resolution. COVID-19 disease severity, ethnicity, age, sex, and remdesivir use did not affect time to sustained symptom resolution.CONCLUSIONWe found that all disease severities had a similar risk of developing post-COVID-19 syndrome in an ethnically diverse population. Comorbid lung disease and lower levels of initial IgG response to SARS-CoV-2 nucleocapsid antigen were associated with longer symptom duration.TRIAL REGISTRATIONClinicalTrials.gov, NCT04373148.FUNDINGNIH UL1TR003142 CTSA grant, NIH U54CA260517 grant, NIEHS R21 ES03304901, Sean N Parker Center for Allergy and Asthma Research at Stanford University, Chan Zuckerberg Biohub, Chan Zuckerberg Initiative, Sunshine Foundation, Crown Foundation, and Parker Foundation.


Subject(s)
COVID-19 , COVID-19/complications , Humans , Immunoglobulin G , SARS-CoV-2 , Post-Acute COVID-19 Syndrome
13.
Cell Rep Med ; 3(7): 100680, 2022 07 19.
Article in English | MEDLINE | ID: covidwho-1907870

ABSTRACT

The biological determinants underlying the range of coronavirus 2019 (COVID-19) clinical manifestations are not fully understood. Here, over 1,400 plasma proteins and 2,600 single-cell immune features comprising cell phenotype, endogenous signaling activity, and signaling responses to inflammatory ligands are cross-sectionally assessed in peripheral blood from 97 patients with mild, moderate, and severe COVID-19 and 40 uninfected patients. Using an integrated computational approach to analyze the combined plasma and single-cell proteomic data, we identify and independently validate a multi-variate model classifying COVID-19 severity (multi-class area under the curve [AUC]training = 0.799, p = 4.2e-6; multi-class AUCvalidation = 0.773, p = 7.7e-6). Examination of informative model features reveals biological signatures of COVID-19 severity, including the dysregulation of JAK/STAT, MAPK/mTOR, and nuclear factor κB (NF-κB) immune signaling networks in addition to recapitulating known hallmarks of COVID-19. These results provide a set of early determinants of COVID-19 severity that may point to therapeutic targets for prevention and/or treatment of COVID-19 progression.


Subject(s)
COVID-19 , Humans , NF-kappa B/metabolism , Proteomics , SARS-CoV-2 , Signal Transduction
14.
J Clin Virol ; 153: 105217, 2022 08.
Article in English | MEDLINE | ID: covidwho-1885897

ABSTRACT

BACKGROUND: Humoral and cellular immune responses to SARS-CoV-2 vaccination among immunosuppressed patients remain poorly defined, as well as variables associated with poor response. METHODS: We performed a retrospective observational cohort study at a large Northern California healthcare system of infection-naïve individuals fully vaccinated against SARS-CoV-2 (mRNA-1273, BNT162b2, or Ad26.COV2.S) with clinical SARS-CoV-2 interferon gamma release assay (IGRA) ordered between January through November 2021. Humoral and cellular immune responses were measured by anti-SARS-CoV-2 S1 IgG ELISA (anti-S1 IgG) and IGRA, respectively, following primary and/or booster vaccination. RESULTS: 496 immunosuppressed patients (54% female; median age 50 years) were included. 62% (261/419) of patients had positive anti-S1 IgG and 71% (277/389) had positive IGRA after primary vaccination, with 20% of patients having a positive IGRA only. Following booster, 69% (81/118) had positive anti-S1 IgG and 73% (91/124) had positive IGRA. Factors associated with low humoral response rates after primary vaccination included anti-CD20 monoclonal antibodies (P < 0.001), sphingosine 1-phsophate (S1P) receptor modulators (P < 0.001), mycophenolate (P = 0.002), and B cell lymphoma (P = 0.004); those associated with low cellular response rates included S1P receptor modulators (P < 0.001) and mycophenolate (P < 0.001). Of patients who had poor humoral response to primary vaccination, 35% (18/52) developed a significantly higher response after the booster. Only 5% (2/42) of patients developed a significantly higher cellular response to the booster dose compared to primary vaccination. CONCLUSIONS: Humoral and cellular response rates to primary and booster SARS-CoV-2 vaccination differ among immunosuppressed patient groups. Clinical testing of cellular immunity is important in monitoring vaccine response in vulnerable populations.


Subject(s)
COVID-19 , Viral Vaccines , Ad26COVS1 , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , Female , Humans , Immunity, Humoral , Immunoglobulin G , Male , Middle Aged , Retrospective Studies , SARS-CoV-2 , Vaccination
15.
Lab Chip ; 22(9): 1690-1701, 2022 05 03.
Article in English | MEDLINE | ID: covidwho-1795646

ABSTRACT

Despite their rarity in peripheral blood, basophils play important roles in allergic disorders and other diseases including sepsis and COVID-19. Existing basophil isolation methods require many manual steps and suffer from significant variability in purity and recovery. We report an integrated basophil isolation device (i-BID) in microfluidics for negative immunomagnetic selection of basophils directly from 100 µL of whole blood within 10 minutes. We use a simulation-driven pipeline to design a magnetic separation module to apply an exponentially increasing magnetic force to capture magnetically tagged non-basophils flowing through a microtubing sandwiched between magnetic flux concentrators sweeping across a Halbach array. The exponential profile captures non-basophils effectively while preventing their excessive initial buildup causing clogging. The i-BID isolates basophils with a mean purity of 93.9% ± 3.6% and recovery of 95.6% ± 3.4% without causing basophil degradation or unintentional activation. Our i-BID has the potential to enable basophil-based point-of-care diagnostics such as rapid allergy assessment.


Subject(s)
COVID-19 , Hypersensitivity , Basophils , Humans , Hypersensitivity/diagnosis , Leukocyte Count , Microfluidics
16.
Nat Immunol ; 23(4): 543-555, 2022 04.
Article in English | MEDLINE | ID: covidwho-1738613

ABSTRACT

Despite the success of the BNT162b2 mRNA vaccine, the immunological mechanisms that underlie its efficacy are poorly understood. Here we analyzed the innate and adaptive responses to BNT162b2 in mice, and show that immunization stimulated potent antibody and antigen-specific T cell responses, as well as strikingly enhanced innate responses after secondary immunization, which was concurrent with enhanced serum interferon (IFN)-γ levels 1 d following secondary immunization. Notably, we found that natural killer cells and CD8+ T cells in the draining lymph nodes are the major producers of this circulating IFN-γ. Analysis of knockout mice revealed that induction of antibody and T cell responses to BNT162b2 was not dependent on signaling via Toll-like receptors 2, 3, 4, 5 and 7 nor inflammasome activation, nor the necroptosis or pyroptosis cell death pathways. Rather, the CD8+ T cell response induced by BNT162b2 was dependent on type I interferon-dependent MDA5 signaling. These results provide insights into the molecular mechanisms by which the BNT162b2 vaccine stimulates immune responses.


Subject(s)
CD8-Positive T-Lymphocytes , Vaccines , Adaptive Immunity , Animals , BNT162 Vaccine , Humans , Immunity, Innate , Mice , Vaccines, Synthetic , mRNA Vaccines
17.
Sci Transl Med ; 14(634): eabn7842, 2022 03 02.
Article in English | MEDLINE | ID: covidwho-1723505

ABSTRACT

Multiple severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants that have mutations associated with increased transmission and antibody escape have arisen over the course of the current pandemic. Although the current vaccines have largely been effective against past variants, the number of mutations found on the Omicron (B.1.1.529) spike protein appear to diminish the protection conferred by preexisting immunity. Using vesicular stomatitis virus (VSV) pseudoparticles expressing the spike protein of several SARS-CoV-2 variants, we evaluated the magnitude and breadth of the neutralizing antibody response over time in individuals after infection and in mRNA-vaccinated individuals. We observed that boosting increases the magnitude of the antibody response to wild-type (D614), Beta, Delta, and Omicron variants; however, the Omicron variant was the most resistant to neutralization. We further observed that vaccinated healthy adults had robust and broad antibody responses, whereas responses may have been reduced in vaccinated pregnant women, underscoring the importance of learning how to maximize mRNA vaccine responses in pregnant populations. Findings from this study show substantial heterogeneity in the magnitude and breadth of responses after infection and mRNA vaccination and may support the addition of more conserved viral antigens to existing SARS-CoV-2 vaccines.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , COVID-19 , Adult , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/prevention & control , COVID-19/virology , COVID-19 Vaccines/immunology , Female , Humans , Pregnancy , Pregnancy Complications, Infectious/immunology , Pregnancy Complications, Infectious/prevention & control , Pregnancy Complications, Infectious/virology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Vaccines, Synthetic/immunology , mRNA Vaccines/immunology
18.
Open Forum Infect Dis ; 9(2): ofab646, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1672245

ABSTRACT

Determinants of Post-Acute Sequelae of COVID-19 are not known. Here we show that 83.3% of patients with viral RNA in blood (RNAemia) at presentation were symptomatic in the post-acute phase. RNAemia at presentation successfully predicted PASC, independent of patient demographics, worst disease severity, and length of symptoms.

19.
Cell ; 185(6): 1025-1040.e14, 2022 03 17.
Article in English | MEDLINE | ID: covidwho-1649487

ABSTRACT

During the SARS-CoV-2 pandemic, novel and traditional vaccine strategies have been deployed globally. We investigated whether antibodies stimulated by mRNA vaccination (BNT162b2), including third-dose boosting, differ from those generated by infection or adenoviral (ChAdOx1-S and Gam-COVID-Vac) or inactivated viral (BBIBP-CorV) vaccines. We analyzed human lymph nodes after infection or mRNA vaccination for correlates of serological differences. Antibody breadth against viral variants is lower after infection compared with all vaccines evaluated but improves over several months. Viral variant infection elicits variant-specific antibodies, but prior mRNA vaccination imprints serological responses toward Wuhan-Hu-1 rather than variant antigens. In contrast to disrupted germinal centers (GCs) in lymph nodes during infection, mRNA vaccination stimulates robust GCs containing vaccine mRNA and spike antigen up to 8 weeks postvaccination in some cases. SARS-CoV-2 antibody specificity, breadth, and maturation are affected by imprinting from exposure history and distinct histological and antigenic contexts in infection compared with vaccination.


Subject(s)
Antibodies, Viral , BNT162 Vaccine , COVID-19 , Germinal Center , Antigens, Viral , COVID-19/prevention & control , Humans , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus , Vaccination
SELECTION OF CITATIONS
SEARCH DETAIL