Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Add filters

Document Type
Year range
J Microbiol Immunol Infect ; 2022 Jul 02.
Article in English | MEDLINE | ID: covidwho-1914641


BACKGROUND: During October 2020, Delta variant was detected for the first time in India and rampantly spread across the globe. It also led to second wave of pandemic in India which affected millions of people. However, there is limited information pertaining to the SARS-CoV-2 strain infecting the children in India. METHODS: Here, we assessed the SARS-CoV-2 lineages circulating in the pediatric population of India during the second wave of the pandemic. Clinical and demographic details linked with the nasopharyngeal/oropharyngeal swabs (NPS/OPS) collected from SARS-CoV-2 cases (n = 583) aged 0-18 year and tested positive by real-time RT-PCR were retrieved from March to June 2021. RESULTS: Symptoms were reported among 37.2% of patients and 14.8% reported to be hospitalized. The E gene CT value had significant statistical difference at the point of sample collection when compared to that observed in the sequencing laboratory. Out of these 512 sequences 372 were VOCs, 51 were VOIs. Most common lineages observed were Delta, followed by Kappa, Alpha and B.1.36, seen in 65.82%, 9.96%, 6.83% and 4.68%, respectively in the study population. CONCLUSION: Overall, it was observed that Delta strain was the leading cause of SARS-CoV-2 infection in Indian children during the second wave of the pandemic. We emphasize on the need of continuous genomic surveillance in SARS-CoV-2 infection even amongst children.

Front Microbiol ; 13: 888195, 2022.
Article in English | MEDLINE | ID: covidwho-1911066


Background: During the second wave of the COVID-19 pandemic, outbreaks of Zika were reported from Kerala, Uttar Pradesh, and Maharashtra, India in 2021. The Dengue and Chikungunya negative samples were retrospectively screened to determine the presence of the Zika virus from different geographical regions of India. Methods: During May to October 2021, the clinical samples of 1475 patients, across 13 states and a union territory of India were screened and re-tested for Dengue, Chikungunya and Zika by CDC Trioplex Real time RT-PCR. The Zika rRTPCR positive samples were further screened with anti-Zika IgM and Plaque Reduction Neutralization Test. Next generation sequencing was used for further molecular characterization. Results: The positivity was observed for Zika (67), Dengue (121), and Chikungunya (10) amongst screened cases. The co-infections of Dengue/Chikungunya, Dengue/Zika, and Dengue/Chikungunya/Zika were also observed. All Zika cases were symptomatic with fever (84%) and rash (78%) as major presenting symptoms. Of them, four patients had respiratory distress, one presented with seizures, and one with suspected microcephaly at birth. The Asian Lineage of Zika and all four serotypes of Dengue were found in circulation. Conclusion: Our study indicates the spread of the Zika virus to several states of India and an urgent need to strengthen its surveillance.

Biosens Bioelectron ; 212: 114406, 2022 Sep 15.
Article in English | MEDLINE | ID: covidwho-1850711


Coronavirus Disease 2019 (COVID-19) pandemic has shown the need for early diagnosis to manage infectious disease outbreaks. Here, we report a label free electrochemical Fluorine-Doped Tin Oxide (FTO) Immunosensor coupled with gold nanorods (GNRs) as an electron carrier for ultrasensitive detection of the Receptor Binding Domain (RBD) of SARS CoV-2 Spike protein. The RBD gene was cloned, and expressed in-house with confirmed molecular weight of ∼31 kDa via Sodium Dodecyl Sulphate-Polyacrylamide Gel Electrophoresis (SDS-PAGE) and Matrix-Assisted Laser Desorption/Ionization-Time of Flight (MALDI-TOF). RBD antibodies (Ab) were generated to be used as a bioreceptor for sensor fabrication, and characterized using SDS-PAGE, Western Blot, and Enzyme-Linked Immunosorbent Assay (ELISA). GNRs were fabricated on the electrode surface, followed by immobilization of RBD Ab. The conjugation steps were confirmed by UV-Vis Spectroscopy, Dynamic Light Scattering (DLS), Atomic Force Microscopy (AFM), Transmission Electron Microscopy (TEM), Cyclic Voltammetry (CV), and Differential Pulse Voltammetry (DPV). The fabricated electrode was further optimized for maximum efficiency and output. The detection limit of the developed electrode was determined as 0.73 fM for RBD antigen (Ag). Furthermore, the patient nasopharyngeal samples were collected in Viral Transport Media (VTM), and tested on the sensor surface that resulted in detection of SARS CoV-2 within 30 s, which was further validated via Reverse Transcription-Polymerase Chain Reaction (RT-PCR). Moreover, the immunosensor showed good repeatability, storage stability, and minimal cross reactivity against Middle East Respiratory Syndrome (MERS) spike protein. Along with ease of fabrication, the electrodes show future miniaturization potential for extensive and rapid screening of populations for COVID-19.

Biosensing Techniques , COVID-19 , Nanotubes , Biosensing Techniques/methods , COVID-19/diagnosis , Carrier Proteins , Gold , Humans , Immunoassay/methods , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/analysis