Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
2.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-337677

ABSTRACT

After the global spread of SARS-CoV-2 Omicron BA.2 lineage, some BA.2-related variants that acquire mutations in the L452 residue of spike protein, such as BA.2.9.1 and BA.2.13 (L452M), BA.2.12.1 (L452Q), and BA.2.11, BA.4 and BA.5 (L452R), emerged in multiple countries. Our statistical analysis showed that the effective reproduction numbers of these L452R/M/Q-bearing BA.2-related Omicron variants are greater than that of the original BA.2. Neutralization experiments revealed that the immunity induced by BA.1 and BA.2 infections is less effective against BA.4/5. Cell culture experiments showed that BA.2.12.1 and BA.4/5 replicate more efficiently in human alveolar epithelial cells than BA.2, and particularly, BA.4/5 is more fusogenic than BA.2. Furthermore, infection experiments using hamsters indicated that BA.4/5 is more pathogenic than BA.2. Altogether, our multiscale investigations suggest that the risk of L452R/M/Q-bearing BA.2-related Omicron variants, particularly BA.4 and BA.5, to global health is potentially greater than that of original BA.2. Highlights Spike L452R/Q/M mutations increase the effective reproduction number of BA.2 BA.4/5 is resistant to the immunity induced by BA.1 and BA.2 infections BA.2.12.1 and BA.4/5 more efficiently spread in human lung cells than BA.2 BA.4/5 is more pathogenic than BA.2 in hamsters

8.
Virus Evol ; 8(1): veac034, 2022.
Article in English | MEDLINE | ID: covidwho-1816263

ABSTRACT

There were five epidemic waves of coronavirus disease 2019 in Japan between 2020 and 2021. It remains unclear how the domestic waves arose and abated. To better understand this, we analyzed the pangenomic sequences of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and characterized the molecular epidemiological features of the five epidemic waves in Japan. In this study, we performed deep sequencing to determine the pangenomic SARS-CoV-2 sequences of 1,286 samples collected in two cities far from each other, Tokyo Metropolis and Nagoya. Then, the spatiotemporal genetic changes of the obtained sequences were compared with the sequences available in the Global Initiative on Sharing All Influenza Data (GISAID) database. A total of 873 genotypes carrying different sets of mutations were identified in the five epidemic waves. Phylogenetic analysis demonstrated that sharp displacements of lineages and genotypes occurred between consecutive waves over the 2 years. In addition, a wide variety of genotypes were observed in the early half of each wave, whereas a few genotypes were detected across Japan during an entire wave. Phylogenetically, putative descendant genotypes observed late in each wave displayed regional clustering and evolution in Japan. The genetic diversity of SARS-CoV-2 displayed uneven dynamics during each epidemic wave in Japan. Our findings provide an important molecular epidemiological basis to aid in controlling future SARS-CoV-2 epidemics.

9.
Cell ; 185(12): 2103-2115.e19, 2022 Jun 09.
Article in English | MEDLINE | ID: covidwho-1814233

ABSTRACT

Soon after the emergence and global spread of the SARS-CoV-2 Omicron lineage BA.1, another Omicron lineage, BA.2, began outcompeting BA.1. The results of statistical analysis showed that the effective reproduction number of BA.2 is 1.4-fold higher than that of BA.1. Neutralization experiments revealed that immunity induced by COVID vaccines widely administered to human populations is not effective against BA.2, similar to BA.1, and that the antigenicity of BA.2 is notably different from that of BA.1. Cell culture experiments showed that the BA.2 spike confers higher replication efficacy in human nasal epithelial cells and is more efficient in mediating syncytia formation than the BA.1 spike. Furthermore, infection experiments using hamsters indicated that the BA.2 spike-bearing virus is more pathogenic than the BA.1 spike-bearing virus. Altogether, the results of our multiscale investigations suggest that the risk of BA.2 to global health is potentially higher than that of BA.1.


Subject(s)
COVID-19 , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Animals , COVID-19/virology , Cricetinae , Epithelial Cells , Humans , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/genetics
10.
Antiviral Res ; 201: 105297, 2022 05.
Article in English | MEDLINE | ID: covidwho-1814106

ABSTRACT

Monoclonal antibody therapy is a promising option for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, and a cocktail of antibodies (REGN-COV) has been administered to infected patients with a favorable outcome. However, it is necessary to continue generating novel sets of monoclonal antibodies with neutralizing activity because viral variants can emerge that show resistance to the currently utilized antibodies. Here, we isolated a new cocktail of antibodies, EV053273 and EV053286, from peripheral blood mononuclear cells derived from convalescent patients infected with wild-type SARS-CoV-2. EV053273 exerted potent antiviral activity against the Wuhan wild-type virus as well as the Alpha and Delta variants in vitro, whereas the antiviral activity of EV053286 was moderate, but it had a wide-range of suppressive activity on the wild-type virus as well as the Alpha, Beta, Delta, Kappa, Omicron BA.1, and BA.2 variants. With the combined use of EV053273 and EV053286, we observed similar inhibitory effects on viral replication as with REGN-COV in vitro. We further assessed their activity in vivo by using a mouse model infected with a recently established viral strain with adopted infectious activity in mice. Independent experiments revealed that the combined use of EV053273 and EV053286 or the single use of each monoclonal antibody efficiently blocked infection in vivo. Together with data showing that these two monoclonal antibodies could neutralize REGN-COV escape variants and the Omicron variant, our findings suggest that the EV053273 and EV053286 monoclonal antibody cocktail is a novel clinically applicable therapeutic candidate for SARS-CoV-2 infection.


Subject(s)
Antineoplastic Agents, Immunological , COVID-19 , Antibodies, Monoclonal , Antibodies, Monoclonal, Humanized , Antibodies, Neutralizing , Antibodies, Viral , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , COVID-19/drug therapy , Drug Combinations , Humans , Leukocytes, Mononuclear , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
11.
Virus evolution ; 8(1), 2022.
Article in English | EuropePMC | ID: covidwho-1812923

ABSTRACT

There were five epidemic waves of coronavirus disease 2019 in Japan between 2020 and 2021. It remains unclear how the domestic waves arose and abated. To better understand this, we analyzed the pangenomic sequences of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and characterized the molecular epidemiological features of the five epidemic waves in Japan. In this study, we performed deep sequencing to determine the pangenomic SARS-CoV-2 sequences of 1,286 samples collected in two cities far from each other, Tokyo Metropolis and Nagoya. Then, the spatiotemporal genetic changes of the obtained sequences were compared with the sequences available in the Global Initiative on Sharing All Influenza Data (GISAID) database. A total of 873 genotypes carrying different sets of mutations were identified in the five epidemic waves. Phylogenetic analysis demonstrated that sharp displacements of lineages and genotypes occurred between consecutive waves over the 2 years. In addition, a wide variety of genotypes were observed in the early half of each wave, whereas a few genotypes were detected across Japan during an entire wave. Phylogenetically, putative descendant genotypes observed late in each wave displayed regional clustering and evolution in Japan. The genetic diversity of SARS-CoV-2 displayed uneven dynamics during each epidemic wave in Japan. Our findings provide an important molecular epidemiological basis to aid in controlling future SARS-CoV-2 epidemics.

13.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-329578

ABSTRACT

Saliva sample can be self-collected and used in testing of SARS-CoV-2 nucleic acid amplification tests (NAATs) test in Japan. However, this may have difficulty collecting a proper specimen when collecting for the first time. We compared 2 collection methods, conventional methods and Direct Saliva Sample Collection method (DiSC) from 44 asymptomatic or symptomatic individuals who were in quarantine in Toho university hospital. RT-PCR by DiSC method showed about 70 % positive percent agreement compared to RT-PCR by conventional methods. In addition, comparing RT-PCR and TMA by DiSC method, TMA showed about 90 % positive percent agreement compared to RT-PCR. DiSC method is easy to perform by every person, does not have complicated restrictions/instructions and can be used in RT-PCR and TMA. This method allows for ease of saliva collection in certain patient populations.

14.
EuropePMC;
Preprint in English | EuropePMC | ID: ppcovidwho-327671

ABSTRACT

Soon after the emergence and global spread of a new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron lineage, BA.1 (ref 1, 2 ), another Omicron lineage, BA.2, has initiated outcompeting BA.1. Statistical analysis shows that the effective reproduction number of BA.2 is 1.4-fold higher than that of BA.1. Neutralisation experiments show that the vaccine-induced humoral immunity fails to function against BA.2 like BA.1, and notably, the antigenicity of BA.2 is different from BA.1. Cell culture experiments show that BA.2 is more replicative in human nasal epithelial cells and more fusogenic than BA.1. Furthermore, infection experiments using hamsters show that BA.2 is more pathogenic than BA.1. Our multiscale investigations suggest that the risk of BA.2 for global health is potentially higher than that of BA.1.

15.
Nature ; 603(7902): 700-705, 2022 03.
Article in English | MEDLINE | ID: covidwho-1661969

ABSTRACT

The emergence of the Omicron variant of SARS-CoV-2 is an urgent global health concern1. In this study, our statistical modelling suggests that Omicron has spread more rapidly than the Delta variant in several countries including South Africa. Cell culture experiments showed Omicron to be less fusogenic than Delta and than an ancestral strain of SARS-CoV-2. Although the spike (S) protein of Delta is efficiently cleaved into two subunits, which facilitates cell-cell fusion2,3, the Omicron S protein was less efficiently cleaved compared to the S proteins of Delta and ancestral SARS-CoV-2. Furthermore, in a hamster model, Omicron showed decreased lung infectivity and was less pathogenic compared to Delta and ancestral SARS-CoV-2. Our multiscale investigations reveal the virological characteristics of Omicron, including rapid growth in the human population, lower fusogenicity and attenuated pathogenicity.


Subject(s)
COVID-19/pathology , COVID-19/virology , Membrane Fusion , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Virus Internalization , Animals , COVID-19/epidemiology , Cell Line , Cricetinae , Humans , In Vitro Techniques , Lung/pathology , Lung/virology , Male , Mesocricetus , Mutation , SARS-CoV-2/classification , SARS-CoV-2/growth & development , South Africa/epidemiology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Virulence , Virus Replication
16.
Jpn J Infect Dis ; 75(1): 36-40, 2022 Jan 24.
Article in English | MEDLINE | ID: covidwho-1650209

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can be detected in the stool samples of patients with coronavirus disease 2019 (COVID-19), and this virus can be transmitted via the oral-fecal route. However, there are only few reports on the viral load in the stool samples. In this pilot study, we aimed to evaluate the clinical characteristics and viral load of SARS-CoV-2 in the stool samples of 13 patients with confirmed COVID-19 using pepper mild mottle virus as a control, which has been proposed as a potential marker of human feces contamination in the environmental water bodies. SARS-CoV-2 RNA was detected in the stool samples of four patients (31%), and among them, three exhibited symptoms of diarrhea. One patient who suffered from long-term diarrhea (22 days) exhibited highest level of viral RNA in the stool sample (8.28 log10 copies/g). However, we could not harvest SARS-CoV-2 from the stool sample of any patient, even after culturing with VeroE6/TMPRESS2 cells for four weeks. Our results suggest that SARS-CoV-2 RNA can be detected in the stool samples of patients with COVID-19 suffering from diarrhea. However, further studies elucidating the relationship between SARS-CoV-2 viral load in the stool samples and symptoms of diarrhea in large cohorts and upon adjusting other causative factors and virus infectivity are still warranted.


Subject(s)
COVID-19 , Diarrhea/epidemiology , Feces , Humans , Pilot Projects , RNA, Viral , SARS-CoV-2 , Viral Load
17.
Japanese Journal of Infectious Diseases ; 2021.
Article in Japanese | J-STAGE | ID: covidwho-1629523

ABSTRACT

It is known that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can be detected in the stools of patients with the coronavirus disease 2019 (COVID-19) and that the virus can be transmitted by oral-fecal route. However, there are few reports on the viral load in stools. This pilot study aimed to evaluate the clinical characteristics and viral load of SARS-CoV-2 in the stools of 13 patients with confirmed COVID-19 using as control the pepper mild mottle virus, which was proposed as a potential indicator of human fecal contamination of environmental water. SARS-CoV-2 RNA was detected in stool samples from four patients (31%), among whom three presented diarrhea symptoms. One patient experiencing long-term diarrhea (22 days) had high levels of viral RNA in the stools (8.28 log10 copies/g). However, we could not isolate the SARS-CoV-2 in the stool of any patients, using VeroE6/TMPRESS2 cells for four weeks. Our results suggest that SARS-CoV-2 RNA may be detected in the stools of patients with the diarrhea symptoms. Further studies evaluating the relationship between SARS-CoV-2 viral load in stools and diarrhea symptoms in larger patient cohorts and upon adjusting for other causative factors and virus infectivity are still needed.

18.
Nature ; 602(7896): 300-306, 2022 02.
Article in English | MEDLINE | ID: covidwho-1532072

ABSTRACT

During the current coronavirus disease 2019 (COVID-19) pandemic, a variety of mutations have accumulated in the viral genome of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and, at the time of writing, four variants of concern are considered to be potentially hazardous to human society1. The recently emerged B.1.617.2/Delta variant of concern is closely associated with the COVID-19 surge that occurred in India in the spring of 2021 (ref. 2). However, the virological properties of B.1.617.2/Delta remain unclear. Here we show that the B.1.617.2/Delta variant is highly fusogenic and notably more pathogenic than prototypic SARS-CoV-2 in infected hamsters. The P681R mutation in the spike protein, which is highly conserved in this lineage, facilitates cleavage of the spike protein and enhances viral fusogenicity. Moreover, we demonstrate that the P681R-bearing virus exhibits higher pathogenicity compared with its parental virus. Our data suggest that the P681R mutation is a hallmark of the virological phenotype of the B.1.617.2/Delta variant and is associated with enhanced pathogenicity.


Subject(s)
COVID-19/virology , Membrane Fusion , Mutation , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/genetics , Amino Acid Substitution , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/epidemiology , Cricetinae , Giant Cells/metabolism , Giant Cells/virology , Male , Mesocricetus , Phylogeny , SARS-CoV-2/immunology , SARS-CoV-2/metabolism , Virulence/genetics , Virus Replication
19.
J Infect Chemother ; 28(2): 242-247, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1510010

ABSTRACT

INTRODUCTION: The Tokyo Metropolitan Government (TMG) conducted an external quality assessment (EQA) survey of pathogen nucleic acid amplification tests (NAATs) as a TMG EQA program for SARS-CoV-2 for clinical laboratories in Tokyo. METHODS: We diluted and prepared a standard product manufactured by Company A to about 2,500 copies/mL to make a positive control and distribute it with a negative control. The participants reported the use of the NAATs methods for SARS-CoV-2, the name of the real-time RT-PCR kit, the name of the detection device, the target gene(s), nucleic acid extraction kit, Threshold Cycle value in the case of RT-PCR and the Threshold time value and Differential calculation value in the case of Loop-Mediated Isothermal Amplification (LAMP) method. RESULTS: As a result, 17 laboratories using fully automated equipment and 34 laboratories using the RT-PCR method reported generally appropriate results in this EQA survey. On the other hand, among the laboratories that adopted the LAMP method, there were a plurality of laboratories that judged positive samples to be negative. CONCLUSION: The false negative result is considered to be due to the fact that the amount of virus genome contained in the quality control reagent used this time was below the detection limit of the LAMP method combined with the rapid extraction reagent for influenza virus. On the other hand, false positive results are considered to be due to the non-specific reaction of the NAATs. The EQA program must be continued for the proper implementation of the pathogen NAATs.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Local Government , Molecular Diagnostic Techniques , Nucleic Acid Amplification Techniques , RNA, Viral , Sensitivity and Specificity , Tokyo
SELECTION OF CITATIONS
SEARCH DETAIL