Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
J Clin Med ; 10(16)2021 Aug 13.
Article in English | MEDLINE | ID: covidwho-1355000

ABSTRACT

The coronavirus disease-2019 (COVID-19) pandemic has caused an enormous loss of lives. Various clinical trials of vaccines and drugs are being conducted worldwide; nevertheless, as of today, no effective drug exists for COVID-19. The identification of key genes and pathways in this disease may lead to finding potential drug targets and biomarkers. Here, we applied weighted gene co-expression network analysis and LIME as an explainable artificial intelligence algorithm to comprehensively characterize transcriptional changes in bronchial epithelium cells (primary human lung epithelium (NHBE) and transformed lung alveolar (A549) cells) during severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Our study detected a network that significantly correlated to the pathogenicity of COVID-19 infection based on identified hub genes in each cell line separately. The novel hub gene signature that was detected in our study, including PGLYRP4 and HEPHL1, may shed light on the pathogenesis of COVID-19, holding promise for future prognostic and therapeutic approaches. The enrichment analysis of hub genes showed that the most relevant biological process and KEGG pathways were the type I interferon signaling pathway, IL-17 signaling pathway, cytokine-mediated signaling pathway, and defense response to virus categories, all of which play significant roles in restricting viral infection. Moreover, according to the drug-target network, we identified 17 novel FDA-approved candidate drugs, which could potentially be used to treat COVID-19 patients through the regulation of four hub genes of the co-expression network. In conclusion, the aforementioned hub genes might play potential roles in translational medicine and might become promising therapeutic targets. Further in vitro and in vivo experimental studies are needed to evaluate the role of these hub genes in COVID-19.

2.
Front Oncol ; 10: 572329, 2020.
Article in English | MEDLINE | ID: covidwho-1264350

ABSTRACT

The recent outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or coronavirus disease 2019 (COVID-19) in China, which spread to the rest of the world, led the World Health Organization to classify it as a global pandemic. COVID-19 belongs to the Bettacoronavirus genus of the Coronaviridae family, and it mainly spreads through the respiratory tract. Studies have now confirmed a human-to-human transmission as the primary pathway of spread. COVID-19 patients with a history of diseases such as respiratory system diseases, immune deficiency, diabetes, cardiovascular disease, and cancer are prone to adverse events (admission to the intensive care unit requiring invasive ventilation or even death). The current focus has been on the development of novel therapeutics, including antivirals, monoclonal antibodies, and vaccines. However, although there is undoubtedly an urgent need to identify effective treatment options against infection with COVID-19, it is equally important to clarify management protocols for the other significant diseases from which these patients may suffer, including cancer. This review summarizes the current evidence regarding the epidemiology, pathogenesis, and management of patients with COVID-19. It also aims to provide the reader with insights into COVID-19 in pregnant patients and those with cancer, outlining necessary precautions relevant to cancer patients. Finally, we provide the available evidence on the latest potent antiviral drugs and vaccines of COVID-19 and the ongoing drug trials.

3.
Arch Virol ; 166(3): 675-696, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-1064514

ABSTRACT

The number of descriptions of emerging viruses has grown at an unprecedented rate since the beginning of the 21st century. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19), is the third highly pathogenic coronavirus that has introduced itself into the human population in the current era, after SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV). Molecular and cellular studies of the pathogenesis of this novel coronavirus are still in the early stages of research; however, based on similarities of SARS-CoV-2 to other coronaviruses, it can be hypothesized that the NF-κB, cytokine regulation, ERK, and TNF-α signaling pathways are the likely causes of inflammation at the onset of COVID-19. Several drugs have been prescribed and used to alleviate the adverse effects of these inflammatory cellular signaling pathways, and these might be beneficial for developing novel therapeutic modalities against COVID-19. In this review, we briefly summarize alterations of cellular signaling pathways that are associated with coronavirus infection, particularly SARS-CoV and MERS-CoV, and tabulate the therapeutic agents that are currently approved for treating other human diseases.


Subject(s)
COVID-19/pathology , Middle East Respiratory Syndrome Coronavirus/metabolism , SARS-CoV-2/metabolism , Signal Transduction/physiology , COVID-19/drug therapy , Cytokines/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Humans , Inflammation/pathology , Middle East Respiratory Syndrome Coronavirus/drug effects , NF-kappa B/metabolism , SARS-CoV-2/drug effects , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL