Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Add filters

Document Type
Year range
Sci Rep ; 12(1): 5804, 2022 04 14.
Article in English | MEDLINE | ID: covidwho-1795684


Photocatalysts are promising materials for solid-state antiviral coatings to protect against the spread of pandemic coronavirus disease (COVID-19). This paper reports that copper oxide nanoclusters grafted with titanium dioxide (CuxO/TiO2) inactivated the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, including its Delta variant, even under dark condition, and further inactivated it under illumination with a white fluorescent bulb. To investigate its inactivation mechanism, the denaturation of spike proteins of SARS-CoV-2 was examined by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and enzyme-linked immunosorbent assay (ELISA). In addition to spike proteins, fragmentation of ribonucleic acids in SARS-CoV-2 was investigated by real-time reverse transcription quantitative polymerase chain reaction (RT-qPCR). As a result, both spike proteins and RNAs in the SARS-CoV-2 virus were damaged by the CuxO/TiO2 photocatalyst even under dark condition and were further damaged under white fluorescent bulb illumination. Based on the present antiviral mechanism, the CuxO/TiO2 photocatalyst will be effective in inactivating other potential mutant strains of SARS-CoV-2. The CuxO/TiO2 photocatalyst can thus be used to reduce the infectious risk of COVID-19 in an indoor environment, where light illumination is turned on during the day and off during the night.

COVID-19 , SARS-CoV-2 , Antiviral Agents , Humans , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Titanium
Sci Rep ; 11(1): 23695, 2021 12 08.
Article in English | MEDLINE | ID: covidwho-1561520


Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly spread across the world. Inactivating the virus in saliva and the oral cavity represents a reasonable approach to prevent human-to-human transmission because the virus is easily transmitted through oral routes by dispersed saliva. Persimmon-derived tannin is a condensed type of tannin that has strong antioxidant and antimicrobial activity. In this study, we investigated the antiviral effects of persimmon-derived tannin against SARS-CoV-2 in both in vitro and in vivo models. We found that persimmon-derived tannin suppressed SARS-CoV-2 titers measured by plaque assay in vitro in a dose- and time-dependent manner. We then created a Syrian hamster model by inoculating SARS-CoV-2 into hamsters' mouths. Oral administration of persimmon-derived tannin dissolved in carboxymethyl cellulose before virus inoculation dramatically reduced the severity of pneumonia with lower virus titers compared with a control group inoculated with carboxymethyl cellulose alone. In addition, pre-administration of tannin to uninfected hamsters reduced hamster-to-hamster transmission of SARS-CoV-2 from a cohoused, infected donor cage mate. These data suggest that oral administration of persimmon-derived tannin may help reduce the severity of SARS-CoV-2 infection and transmission of the virus.

Antiviral Agents/therapeutic use , COVID-19/drug therapy , Diospyros/chemistry , Tannins/therapeutic use , Administration, Oral , Animals , Antiviral Agents/chemistry , Antiviral Agents/isolation & purification , Antiviral Agents/pharmacology , COVID-19/pathology , COVID-19/transmission , COVID-19/virology , Cricetinae , Diospyros/metabolism , Disease Models, Animal , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Interleukin-6/genetics , Interleukin-6/metabolism , Lung/pathology , Lung/virology , Male , Mesocricetus , SARS-CoV-2/isolation & purification , SARS-CoV-2/physiology , Severity of Illness Index , Tannins/chemistry , Tannins/isolation & purification , Tannins/pharmacology , Viral Load/drug effects
Mater Lett ; 290: 129510, 2021 May 01.
Article in English | MEDLINE | ID: covidwho-1096152


Two cerium molybdates (Ce2Mo3O12 and γ-Ce2Mo3O13) were prepared using either polymerizable complex method or hydrothermal process. The obtained powders were almost single-phase with different cerium valence. Both samples were found to have antiviral activity against bacteriophage Φ6. Especially, γ-Ce2Mo3O13 exhibited high antiviral activity against both bacteriophage Φ6 and SARS-CoV-2 coronavirus, which causes COVID-19. A synergetic effect of Ce and molybdate ion was inferred along with the specific surface area as key factors for antiviral activity.