Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
J Infect Dis ; 2022 Nov 23.
Article in English | MEDLINE | ID: covidwho-2135334

ABSTRACT

BACKGROUND: We assessed COVID-19 vaccination impact on illness severity among adults hospitalized with COVID-19 August 2021-March 2022. METHODS: We evaluated differences in intensive care unit (ICU) admission, in-hospital death, and length of stay among vaccinated (2 or 3 mRNA vaccine doses) versus unvaccinated patients aged ≥18 years hospitalized for ≥24 hours with COVID-19-like illness (CLI) and positive SARS-CoV-2 molecular testing. We calculated odds ratios for ICU admission and death and subdistribution hazard ratios (SHR) for time to hospital discharge adjusted for age, geographic region, calendar time, and local virus circulation. RESULTS: We included 27,149 SARS-CoV-2 positive hospitalizations. During both Delta and Omicron-predominant periods, protection against ICU admission was strongest among 3-dose vaccinees compared with unvaccinated patients (Delta OR [CI]: 0.52 [0.28-0.96]); Omicron OR [CI]: 0.69 [0.54-0.87]). During both periods, risk of in-hospital of death was lower among vaccinated compared with unvaccinated but ORs were overlapping; during Omicron, lowest among 3-dose vaccinees (OR [CI] 0.39 [0.28-0.54]). We observed SHR >1 across all vaccination strata in both periods indicating faster discharge for vaccinated patients. CONCLUSIONS: COVID-19 vaccination was associated with lower rates of ICU admission and in-hospital death in both Delta and Omicron periods compared with being unvaccinated.

2.
Obstet Gynecol ; 140(5): 874-877, 2022 11 01.
Article in English | MEDLINE | ID: covidwho-2107619

ABSTRACT

Influenza testing and case-confirmation rates in pregnant populations have not been reported during the coronavirus disease 2019 (COVID-19) pandemic. Using electronic medical record data from a cohort of nearly 20,000 pregnancies in the United States, this retrospective cohort study examines the frequency of acute respiratory or febrile illness encounters, influenza testing, and influenza positivity during the 2020-2021 influenza season, which occurred during the COVID-19 pandemic, compared with the 2019-2020 influenza season, which largely did not. The ratios of influenza tests to acute respiratory or febrile illness visits were similar in the 2019-2020 and 2020-2021 influenza seasons (approximately 1:8 and 1:9, respectively) but were low and varied by study site. Although influenza testing in pregnant patients continued in the 2020-2021 season, when severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) circulation was widespread in the United States, no cases of influenza were identified in our study cohort.


Subject(s)
COVID-19 , Influenza, Human , Humans , Pregnancy , Female , United States/epidemiology , Influenza, Human/diagnosis , Influenza, Human/epidemiology , Pandemics , Seasons , SARS-CoV-2 , COVID-19/epidemiology , Retrospective Studies
3.
MMWR Morb Mortal Wkly Rep ; 71(42): 1335-1342, 2022 Oct 21.
Article in English | MEDLINE | ID: covidwho-2081113

ABSTRACT

Persons with moderate-to-severe immunocompromising conditions might have reduced protection after COVID-19 vaccination, compared with persons without immunocompromising conditions (1-3). On August 13, 2021, the Advisory Committee on Immunization Practices (ACIP) recommended that adults with immunocompromising conditions receive an expanded primary series of 3 doses of an mRNA COVID-19 vaccine. ACIP followed with recommendations on September 23, 2021, for a fourth (booster) dose and on September 1, 2022, for a new bivalent mRNA COVID-19 vaccine booster dose, containing components of the BA.4 and BA.5 sublineages of the Omicron (B.1.1.529) variant (4). Data on vaccine effectiveness (VE) of monovalent COVID-19 vaccines among persons with immunocompromising conditions since the emergence of the Omicron variant in December 2021 are limited. In the multistate VISION Network,§ monovalent 2-, 3-, and 4-dose mRNA VE against COVID-19-related hospitalization were estimated among adults with immunocompromising conditions¶ hospitalized with COVID-19-like illness,** using a test-negative design comparing odds of previous vaccination among persons with a positive or negative molecular test result (case-patients and control-patients) for SARS-CoV-2 (the virus that causes COVID-19). During December 16, 2021-August 20, 2022, among SARS-CoV-2 test-positive case-patients, 1,815 (36.3%), 1,387 (27.7%), 1,552 (31.0%), and 251 (5.0%) received 0, 2, 3, and 4 mRNA COVID-19 vaccine doses, respectively. Among test-negative control-patients during this period, 6,928 (23.7%), 7,411 (25.4%), 12,734 (43.6%), and 2,142 (7.3%) received these respective doses. Overall, VE against COVID-19-related hospitalization among adults with immunocompromising conditions hospitalized for COVID-like illness during Omicron predominance was 36% ≥14 days after dose 2, 69% 7-89 days after dose 3, and 44% ≥90 days after dose 3. Restricting the analysis to later periods when Omicron sublineages BA.2/BA.2.12.1 and BA.4/BA.5 were predominant and 3-dose recipients were eligible to receive a fourth dose, VE was 32% ≥90 days after dose 3 and 43% ≥7 days after dose 4. Protection offered by vaccination among persons with immunocompromising conditions during Omicron predominance was moderate even after a 3-dose monovalent primary series or booster dose. Given the incomplete protection against hospitalization afforded by monovalent COVID-19 vaccines, persons with immunocompromising conditions might benefit from updated bivalent vaccine booster doses that target recently circulating Omicron sublineages, in line with ACIP recommendations. Further, additional protective recommendations for persons with immunocompromising conditions, including the use of prophylactic antibody therapy, early access to and use of antivirals, and enhanced nonpharmaceutical interventions such as well-fitting masks or respirators, should also be considered.


Subject(s)
COVID-19 Vaccines , COVID-19 , Adult , Humans , SARS-CoV-2 , COVID-19/epidemiology , COVID-19/prevention & control , Antiviral Agents , Hospitalization , Vaccines, Combined , RNA, Messenger
4.
JAMA ; 328(15): 1523-1533, 2022 10 18.
Article in English | MEDLINE | ID: covidwho-2074838

ABSTRACT

Importance: Data on the epidemiology of mild to moderately severe COVID-19 are needed to inform public health guidance. Objective: To evaluate associations between 2 or 3 doses of mRNA COVID-19 vaccine and attenuation of symptoms and viral RNA load across SARS-CoV-2 viral lineages. Design, Setting, and Participants: A prospective cohort study of essential and frontline workers in Arizona, Florida, Minnesota, Oregon, Texas, and Utah with COVID-19 infection confirmed by reverse transcriptase-polymerase chain reaction testing and lineage classified by whole genome sequencing of specimens self-collected weekly and at COVID-19 illness symptom onset. This analysis was conducted among 1199 participants with SARS-CoV-2 from December 14, 2020, to April 19, 2022, with follow-up until May 9, 2022, reported. Exposures: SARS-CoV-2 lineage (origin strain, Delta variant, Omicron variant) and COVID-19 vaccination status. Main Outcomes and Measures: Clinical outcomes included presence of symptoms, specific symptoms (including fever or chills), illness duration, and medical care seeking. Virologic outcomes included viral load by quantitative reverse transcriptase-polymerase chain reaction testing along with viral viability. Results: Among 1199 participants with COVID-19 infection (714 [59.5%] women; median age, 41 years), 14.0% were infected with the origin strain, 24.0% with the Delta variant, and 62.0% with the Omicron variant. Participants vaccinated with the second vaccine dose 14 to 149 days before Delta infection were significantly less likely to be symptomatic compared with unvaccinated participants (21/27 [77.8%] vs 74/77 [96.1%]; OR, 0.13 [95% CI, 0-0.6]) and, when symptomatic, those vaccinated with the third dose 7 to 149 days before infection were significantly less likely to report fever or chills (5/13 [38.5%] vs 62/73 [84.9%]; OR, 0.07 [95% CI, 0.0-0.3]) and reported significantly fewer days of symptoms (10.2 vs 16.4; difference, -6.1 [95% CI, -11.8 to -0.4] days). Among those with Omicron infection, the risk of symptomatic infection did not differ significantly for the 2-dose vaccination status vs unvaccinated status and was significantly higher for the 3-dose recipients vs those who were unvaccinated (327/370 [88.4%] vs 85/107 [79.4%]; OR, 2.0 [95% CI, 1.1-3.5]). Among symptomatic Omicron infections, those vaccinated with the third dose 7 to 149 days before infection compared with those who were unvaccinated were significantly less likely to report fever or chills (160/311 [51.5%] vs 64/81 [79.0%]; OR, 0.25 [95% CI, 0.1-0.5]) or seek medical care (45/308 [14.6%] vs 20/81 [24.7%]; OR, 0.45 [95% CI, 0.2-0.9]). Participants with Delta and Omicron infections who received the second dose 14 to 149 days before infection had a significantly lower mean viral load compared with unvaccinated participants (3 vs 4.1 log10 copies/µL; difference, -1.0 [95% CI, -1.7 to -0.2] for Delta and 2.8 vs 3.5 log10 copies/µL, difference, -1.0 [95% CI, -1.7 to -0.3] for Omicron). Conclusions and Relevance: In a cohort of US essential and frontline workers with SARS-CoV-2 infections, recent vaccination with 2 or 3 mRNA vaccine doses less than 150 days before infection with Delta or Omicron variants, compared with being unvaccinated, was associated with attenuated symptoms, duration of illness, medical care seeking, or viral load for some comparisons, although the precision and statistical significance of specific estimates varied.


Subject(s)
COVID-19 Vaccines , COVID-19 , Vaccination , Viral Load , Adult , Female , Humans , Male , COVID-19/diagnosis , COVID-19/genetics , COVID-19/prevention & control , COVID-19/virology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/therapeutic use , Prospective Studies , RNA, Viral/analysis , RNA, Viral/genetics , RNA-Directed DNA Polymerase , SARS-CoV-2/genetics , Vaccination/statistics & numerical data , United States/epidemiology , Viral Load/drug effects , Viral Load/genetics , Viral Load/statistics & numerical data , Whole Genome Sequencing , Asymptomatic Infections/epidemiology , Asymptomatic Infections/therapy , Time Factors , Patient Acceptance of Health Care/statistics & numerical data
5.
BMJ ; 379: e072141, 2022 10 03.
Article in English | MEDLINE | ID: covidwho-2053175

ABSTRACT

OBJECTIVE: To estimate the effectiveness of mRNA vaccines against moderate and severe covid-19 in adults by time since second, third, or fourth doses, and by age and immunocompromised status. DESIGN: Test negative case-control study. SETTING: Hospitals, emergency departments, and urgent care clinics in 10 US states, 17 January 2021 to 12 July 2022. PARTICIPANTS: 893 461 adults (≥18 years) admitted to one of 261 hospitals or to one of 272 emergency department or 119 urgent care centers for covid-like illness tested for SARS-CoV-2. MAIN OUTCOME MEASURES: The main outcome was waning of vaccine effectiveness with BNT162b2 (Pfizer-BioNTech) or mRNA-1273 (Moderna) vaccine during the omicron and delta periods, and the period before delta was dominant using logistic regression conditioned on calendar week and geographic area while adjusting for age, race, ethnicity, local virus circulation, immunocompromised status, and likelihood of being vaccinated. RESULTS: 45 903 people admitted to hospital with covid-19 (cases) were compared with 213 103 people with covid-like illness who tested negative for SARS-CoV-2 (controls), and 103 287 people admitted to emergency department or urgent care with covid-19 (cases) were compared with 531 168 people with covid-like illness who tested negative for SARS-CoV-2. In the omicron period, vaccine effectiveness against covid-19 requiring admission to hospital was 89% (95% confidence interval 88% to 90%) within two months after dose 3 but waned to 66% (63% to 68%) by four to five months. Vaccine effectiveness of three doses against emergency department or urgent care visits was 83% (82% to 84%) initially but waned to 46% (44% to 49%) by four to five months. Waning was evident in all subgroups, including young adults and individuals who were not immunocompromised; although waning was morein people who were immunocompromised. Vaccine effectiveness increased among most groups after a fourth dose in whom this booster was recommended. CONCLUSIONS: Effectiveness of mRNA vaccines against moderate and severe covid-19 waned with time after vaccination. The findings support recommendations for a booster dose after a primary series and consideration of additional booster doses.


Subject(s)
COVID-19 , BNT162 Vaccine , COVID-19/epidemiology , COVID-19/prevention & control , Case-Control Studies , Humans , SARS-CoV-2 , Vaccine Efficacy , Young Adult
6.
Open Forum Infect Dis ; 9(10): ofac376, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-2051509

ABSTRACT

Background: Limited data exist on population-based risks and risk ratios (RRs) of coronavirus disease 2019 (COVID-19)-associated hospitalizations and clinical outcomes stratified by age and race/ethnicity. Methods: Using data from electronic health records and claims from 4 US health systems for the period March 2020-March 2021, we calculated risk and RR by age and race/ethnicity for COVID-19-associated hospitalizations and clinical outcomes among adults (≥18 years). COVID-19-associated hospitalizations were defined based on COVID-19 discharge codes or a positive severe acute respiratory syndrome coronavirus 2 result. Proportions of acute exacerbations of underlying conditions were estimated among hospitalized patients with select underlying conditions, stratified by age and race/ethnicity. Results: Among 2.6 million adults included in the patient cohort, 6879 had COVID-19-associated hospitalizations during March 2020-March 2021 (risk: 264 per 100 000 population). Compared with younger, non-Hispanic White adults, non-Hispanic Black and Hispanic adults aged ≥65 years had the highest hospitalization risk ratios (RR, 8.6; 95% CI, 7.6-9.9; and RR, 9.3; 95% CI, 8.5-10.3, respectively). Among hospitalized adults with COVID-19 and renal disease or cardiovascular disease, the highest proportion of acute renal failure (55.5%) or congestive heart failure (43.9%) occurred in older, non-Hispanic Black patients. Among hospitalized adults with chronic lung disease or asthma, the highest proportion of respiratory failure (62.9%) or asthma exacerbation (66.7%) occurred in older, Hispanic patients. Conclusions: During the first year of the US COVID-19 pandemic in this cohort, older non-Hispanic Black and Hispanic adults had the highest relative risks of COVID-19-associated hospitalization and adverse outcomes and, among those with select underlying conditions, the highest occurrences of acute exacerbations of underlying conditions.

7.
JAMA Netw Open ; 5(9): e2233273, 2022 09 01.
Article in English | MEDLINE | ID: covidwho-2047371

ABSTRACT

Importance: Pregnant people are at high risk for severe COVID-19 but were excluded from mRNA vaccine trials; data on COVID-19 vaccine effectiveness (VE) are needed. Objective: To evaluate the estimated effectiveness of mRNA vaccination against medically attended COVID-19 among pregnant people during Delta and Omicron predominance. Design, Setting, and Participants: This test-negative, case-control study was conducted from June 2021 to June 2022 in a network of 306 hospitals and 164 emergency department and urgent care (ED/UC) facilities across 10 US states, including 4517 ED/UC encounters and 975 hospitalizations among pregnant people with COVID-19-like illness (CLI) who underwent SARS-CoV-2 molecular testing. Exposures: Two doses (14-149 and ≥150 days prior) and 3 doses (7-119 and ≥120 days prior) of COVID-19 mRNA vaccine (≥1 dose received during pregnancy) vs unvaccinated. Main Outcomes and Measures: Estimated VE against laboratory-confirmed COVID-19-associated ED/UC encounter or hospitalization, based on the adjusted odds ratio (aOR) for prior vaccination; VE was calculated as (1 - aOR) × 100%. Results: Among 4517 eligible CLI-associated ED/UC encounters and 975 hospitalizations, 885 (19.6%) and 334 (34.3%) were SARS-CoV-2 positive, respectively; the median (IQR) patient age was 28 (24-32) years and 31 (26-35) years, 537 (12.0%) and 118 (12.0%) were non-Hispanic Black and 1189 (26.0%) and 240 (25.0%) were Hispanic. During Delta predominance, the estimated VE against COVID-19-associated ED/UC encounters was 84% (95% CI, 69% to 92%) for 2 doses within 14 to 149 days, 75% (95% CI, 5% to 93%) for 2 doses 150 or more days prior, and 81% (95% CI, 30% to 95%) for 3 doses 7 to 119 days prior; estimated VE against COVID-19-associated hospitalization was 99% (95% CI, 96% to 100%), 96% (95% CI, 86% to 99%), and 97% (95% CI, 79% to 100%), respectively. During Omicron predominance, for ED/UC encounters, the estimated VE of 2 doses within 14 to 149 days, 2 doses 150 or more days, 3 doses within 7 to 119 days, and 3 doses 120 or more days prior was 3% (95% CI, -49% to 37%), 42% (95% CI, -16% to 72%), 79% (95% CI, 59% to 89%), and -124% (95% CI, -414% to 2%), respectively; for hospitalization, estimated VE was 86% (95% CI, 41% to 97%), 64% (95% CI, -102% to 93%), 86% (95% CI, 28% to 97%), and -53% (95% CI, -1254% to 83%), respectively. Conclusions and Relevance: In this study, maternal mRNA COVID-19 vaccination, including booster dose, was associated with protection against medically attended COVID-19. VE estimates were higher against COVID-19-associated hospitalization than ED/UC visits and lower against the Omicron variant than the Delta variant. Protection waned over time, particularly during Omicron predominance.


Subject(s)
COVID-19 , Influenza Vaccines , Influenza, Human , Pregnancy Complications, Infectious , Adult , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Case-Control Studies , Female , Humans , Influenza, Human/prevention & control , Pregnancy , Pregnancy Complications, Infectious/epidemiology , Pregnancy Complications, Infectious/prevention & control , RNA, Messenger, Stored , SARS-CoV-2/genetics , United States/epidemiology , Vaccines, Synthetic , mRNA Vaccines
8.
Clin Infect Dis ; 2022 Aug 12.
Article in English | MEDLINE | ID: covidwho-1992161

ABSTRACT

BACKGROUND: Identifying SARS-CoV-2 infections during peripartum hospitalizations is important to guide care, implement prevention measures, and understand infection burden. METHODS: This cross-sectional analysis used electronic health record data from hospitalizations during which pregnancies ended (peripartum hospitalizations) among a cohort of pregnant persons at 3 U.S. integrated healthcare networks (Sites 1-3). Maternal demographic, medical encounter, SARS-CoV-2 testing, and pregnancy and neonatal outcome information was extracted for persons with estimated delivery and pregnancy end dates during March 2020-February 2021 and ≥1 prenatal care record. Site-stratified multivariable logistic regression was used to identify factors associated with testing and compare pregnancy and neonatal outcomes among persons tested. RESULTS: Among 17,858 pregnant persons, 10,863 (60.8%) had peripartum SARS-CoV-2 testing; 222/10,683 (2.0%) had positive results. Testing prevalence varied by site and was lower during March-May 2020. Factors associated with higher peripartum SARS-CoV-2 testing odds were Asian race (adjusted odds ratio [aOR]: 1.36; 95% CI: 1.03-1.79; referent: White) (Site 1), Hispanic or Latina ethnicity (aOR: 1.33; 95% CI: 1.08-1.64) (Site 2), peripartum Medicaid coverage (aOR: 1.33; 95% CI: 1.06-1.66) (Site 1), and preterm hospitalization (aOR: 1.69; 95% CI: 1.19-2.39 [Site 1]; aOR: 1.39; 95% CI: 1.03-1.88 [Site 2]). CONCLUSIONS: Findings highlight potential disparities in SARS-CoV-2 peripartum testing by demographic and pregnancy characteristics. Testing practice variations should be considered when interpreting studies relying on convenience samples of pregnant persons testing positive for SARS-CoV-2. Efforts to address testing differences between groups could improve equitable testing practices and care for pregnant persons with SARS-CoV-2 infections.

9.
MMWR Morb Mortal Wkly Rep ; 71(29): 931-939, 2022 Jul 22.
Article in English | MEDLINE | ID: covidwho-1955144

ABSTRACT

The Omicron variant (B.1.1.529) of SARS-CoV-2, the virus that causes COVID-19, was first identified in the United States in November 2021, with the BA.1 sublineage (including BA.1.1) causing the largest surge in COVID-19 cases to date. Omicron sublineages BA.2 and BA.2.12.1 emerged later and by late April 2022, accounted for most cases.* Estimates of COVID-19 vaccine effectiveness (VE) can be reduced by newly emerging variants or sublineages that evade vaccine-induced immunity (1), protection from previous SARS-CoV-2 infection in unvaccinated persons (2), or increasing time since vaccination (3). Real-world data comparing VE during the periods when the BA.1 and BA.2/BA.2.12.1 predominated (BA.1 period and BA.2/BA.2.12.1 period, respectively) are limited. The VISION network† examined 214,487 emergency department/urgent care (ED/UC) visits and 58,782 hospitalizations with a COVID-19-like illness§ diagnosis among 10 states during December 18, 2021-June 10, 2022, to evaluate VE of 2, 3, and 4 doses of mRNA COVID-19 vaccines (BNT162b2 [Pfizer-BioNTech] or mRNA-1273 [Moderna]) compared with no vaccination among adults without immunocompromising conditions. VE against COVID-19-associated hospitalization 7-119 days and ≥120 days after receipt of dose 3 was 92% (95% CI = 91%-93%) and 85% (95% CI = 81%-89%), respectively, during the BA.1 period, compared with 69% (95% CI = 58%-76%) and 52% (95% CI = 44%-59%), respectively, during the BA.2/BA.2.12.1 period. Patterns were similar for ED/UC encounters. Among adults aged ≥50 years, VE against COVID-19-associated hospitalization ≥120 days after receipt of dose 3 was 55% (95% CI = 46%-62%) and ≥7 days (median = 27 days) after a fourth dose was 80% (95% CI = 71%-85%) during BA.2/BA.2.12.1 predominance. Immunocompetent persons should receive recommended COVID-19 booster doses to prevent moderate to severe COVID-19, including a first booster dose for all eligible persons and second booster dose for adults aged ≥50 years at least 4 months after an initial booster dose. Booster doses should be obtained immediately when persons become eligible.¶.


Subject(s)
COVID-19 , Influenza Vaccines , Influenza, Human , Adult , BNT162 Vaccine , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Humans , SARS-CoV-2/genetics , United States/epidemiology , Vaccines, Synthetic , mRNA Vaccines
10.
Open forum infectious diseases ; 2022.
Article in English | EuropePMC | ID: covidwho-1939875

ABSTRACT

Background Pregnant individuals are at increased risk of COVID-19 hospitalization and death, and primary and booster COVID-19 vaccination is recommended for this population. Methods Among a cohort of pregnant individuals who received prenatal care at three healthcare systems in the United States, we estimated the cumulative incidence of hospitalization with symptomatic COVID-19 illness. We also identified factors associated with COVID-19 hospitalization using a multivariable Cox proportional-hazards model with pregnancy weeks as the timescale and a time-varying adjustor that accounted for SARS-CoV-2 circulation;model covariates included site, age, race, ethnicity, insurance status, pre-pregnancy weight status, and selected underlying medical conditions. Data were collected primarily through medical record extraction. Results Among 19,456 pregnant individuals with an estimated due date March 1, 2020-February 28, 2021, 75 (0.4%) were hospitalized with symptomatic COVID-19. Factors associated with hospitalization for symptomatic COVID-19 were Hispanic ethnicity (aHR: 2.7;95% CI: 1.3,5.5), native Hawaiian or Pacific Islander race (aHR: 12;95% CI: 3.2,45.5), age <25 years (aHR: 3.1;95% CI: 1.3,7.6), pre-pregnancy obesity (aHR: 2.1;95% CI: 1.1,3.9), diagnosis of a metabolic disorder (aHR: 2.2;95% CI: 1.2,3.8), lung disease excluding asthma (aHR: 49;95% CI: 28,84) and cardiovascular disease (aHR: 2.6;95% CI: 1.5,4.7). Conclusion Although hospitalization with symptomatic COVID-19 was uncommon, pregnant individuals should be aware of risk factors associated with severe illness when considering COVID-19 vaccination.

12.
Microbiol Spectr ; 10(3): e0103322, 2022 Jun 29.
Article in English | MEDLINE | ID: covidwho-1879118

ABSTRACT

Respiratory specimen collection materials shortages hampers severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) testing. We compared specimen alternatives and evaluated SARS-CoV-2 RNA stability under simulated shipping conditions. We compared concordance of RT-PCR detection of SARS-CoV-2 from flocked midturbinate swabs (MTS) in viral transport media (VTM), foam MTS without VTM, and saliva. Specimens were collected between August 2020 and April 2021 from three prospective cohorts. We compared RT-PCR cycle quantification (Cq) for Spike (S), Nucleocapsid (N), and the Open Reading Frame 1ab (ORF) genes for flocked MTS and saliva specimens tested before and after exposure to a range of storage temperatures (4-30°C) and times (2, 3, and 7 days). Of 1,900 illnesses with ≥2 specimen types tested, 335 (18%) had SARS-CoV-2 detected in ≥1 specimen; 304 (91%) were concordant across specimen types. Among illnesses with SARS-CoV-2 detection, 97% (95% confidence interval [CI]: 94-98%) were positive on flocked MTS, 99% (95% CI: 97-100%) on saliva, and 89% (95% CI: 84-93%) on foam MTS. SARS-CoV-2 RNA was detected in flocked MTS and saliva stored up to 30°C for 7 days. All specimen types provided highly concordant SARS-CoV-2 results. These findings support a range of viable options for specimen types, collection, and transport methods that may facilitate SARS-CoV-2 testing during supply and personnel shortages. IMPORTANCE Findings from this analysis indicate that (1) self-collection of flocked and foam MTS and saliva samples is feasible in both adults and children, (2) foam MTS with VTM and saliva are both viable and reasonable alternatives to traditional flocked MTS in VTM for SARS-CoV-2 detection, and (3) these sample types may be stored and transported at ambient temperatures for up to 7 days without compromising sample quality. These findings support methods of sample collection for SARS-CoV-2 detection that may facilitate widespread community testing in the setting of supply and personnel shortages during the current pandemic.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , COVID-19/diagnosis , COVID-19 Testing , Child , Humans , Prospective Studies , RNA, Viral/analysis , RNA, Viral/genetics , SARS-CoV-2/genetics , Saliva , Specimen Handling/methods
13.
JMIR Res Protoc ; 11(7): e37929, 2022 Jul 28.
Article in English | MEDLINE | ID: covidwho-1875305

ABSTRACT

BACKGROUND: Assessing the real-world effectiveness of COVID-19 vaccines and understanding the incidence and severity of SARS-CoV-2 illness in children are essential to inform policy and guide health care professionals in advising parents and caregivers of children who test positive for SARS-CoV-2. OBJECTIVE: This report describes the objectives and methods for conducting the Pediatric Research Observing Trends and Exposures in COVID-19 Timelines (PROTECT) study. PROTECT is a longitudinal prospective pediatric cohort study designed to estimate SARS-CoV-2 incidence and COVID-19 vaccine effectiveness (VE) against infection among children aged 6 months to 17 years, as well as differences in SARS-CoV-2 infection and vaccine response between children and adolescents. METHODS: The PROTECT multisite network was initiated in July 2021, which aims to enroll approximately 2305 children across four US locations and collect data over a 2-year surveillance period. The enrollment target was based on prospective power calculations and accounts for expected attrition and nonresponse. Study sites recruit parents and legal guardians of age-eligible children participating in the existing Arizona Healthcare, Emergency Response, and Other Essential Workers Surveillance (HEROES)-Research on the Epidemiology of SARS-CoV-2 in Essential Response Personnel (RECOVER) network as well as from surrounding communities. Child demographics, medical history, COVID-19 exposure, vaccination history, and parents/legal guardians' knowledge and attitudes about COVID-19 are collected at baseline and throughout the study. Mid-turbinate nasal specimens are self-collected or collected by parents/legal guardians weekly, regardless of symptoms, for SARS-CoV-2 and influenza testing via reverse transcription-polymerase chain reaction (RT-PCR) assay, and the presence of COVID-like illness (CLI) is reported. Children who test positive for SARS-CoV-2 or influenza, or report CLI are monitored weekly by online surveys to report exposure and medical utilization until no longer ill. Children, with permission of their parents/legal guardians, may elect to contribute blood at enrollment, following SARS-CoV-2 infection, following COVID-19 vaccination, and at the end of the study period. PROTECT uses electronic medical record (EMR) linkages where available, and verifies COVID-19 and influenza vaccinations through EMR or state vaccine registries. RESULTS: Data collection began in July 2021 and is expected to continue through the spring of 2023. As of April 13, 2022, 2371 children are enrolled in PROTECT. Enrollment is ongoing at all study sites. CONCLUSIONS: As COVID-19 vaccine products are authorized for use in pediatric populations, PROTECT study data will provide real-world estimates of VE in preventing infection. In addition, this prospective cohort provides a unique opportunity to further understand SARS-CoV-2 incidence, clinical course, and key knowledge gaps that may inform public health. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): RR1-10.2196/37929.

14.
MMWR Morb Mortal Wkly Rep ; 71(13): 495-502, 2022 Apr 01.
Article in English | MEDLINE | ID: covidwho-1771891

ABSTRACT

CDC recommends that all persons aged ≥18 years receive a single COVID-19 vaccine booster dose ≥2 months after receipt of an Ad.26.COV2.S (Janssen [Johnson & Johnson]) adenovirus vector-based primary series vaccine; a heterologous COVID-19 mRNA vaccine is preferred over a homologous (matching) Janssen vaccine for booster vaccination. This recommendation was made in light of the risks for rare but serious adverse events following receipt of a Janssen vaccine, including thrombosis with thrombocytopenia syndrome and Guillain-Barré syndrome† (1), and clinical trial data indicating similar or higher neutralizing antibody response following heterologous boosting compared with homologous boosting (2). Data on real-world vaccine effectiveness (VE) of different booster strategies following a primary Janssen vaccine dose are limited, particularly during the period of Omicron variant predominance. The VISION Network§ determined real-world VE of 1 Janssen vaccine dose and 2 alternative booster dose strategies: 1) a homologous booster (i.e., 2 Janssen doses) and 2) a heterologous mRNA booster (i.e., 1 Janssen dose/1 mRNA dose). In addition, VE of these booster strategies was compared with VE of a homologous booster following mRNA primary series vaccination (i.e., 3 mRNA doses). The study examined 80,287 emergency department/urgent care (ED/UC) visits¶ and 25,244 hospitalizations across 10 states during December 16, 2021-March 7, 2022, when Omicron was the predominant circulating variant.** VE against laboratory-confirmed COVID-19-associated ED/UC encounters was 24% after 1 Janssen dose, 54% after 2 Janssen doses, 79% after 1 Janssen/1 mRNA dose, and 83% after 3 mRNA doses. VE for the same vaccination strategies against laboratory-confirmed COVID-19-associated hospitalizations were 31%, 67%, 78%, and 90%, respectively. All booster strategies provided higher protection than a single Janssen dose against ED/UC visits and hospitalizations during Omicron variant predominance. Vaccination with 1 Janssen/1 mRNA dose provided higher protection than did 2 Janssen doses against COVID-19-associated ED/UC visits and was comparable to protection provided by 3 mRNA doses during the first 120 days after a booster dose. However, 3 mRNA doses provided higher protection against COVID-19-associated hospitalizations than did other booster strategies during the same time interval since booster dose. All adults who have received mRNA vaccines for their COVID-19 primary series vaccination should receive an mRNA booster dose when eligible. Adults who received a primary Janssen vaccine dose should preferentially receive a heterologous mRNA vaccine booster dose ≥2 months later, or a homologous Janssen vaccine booster dose if mRNA vaccine is contraindicated or unavailable. Further investigation of the durability of protection afforded by different booster strategies is warranted.


Subject(s)
COVID-19 , Influenza Vaccines , Adolescent , Adult , Ambulatory Care , COVID-19/prevention & control , COVID-19 Vaccines , Emergency Service, Hospital , Hospitalization , Humans , Immunization, Secondary , SARS-CoV-2 , Vaccines, Synthetic
15.
MMWR Morb Mortal Wkly Rep ; 71(11): 422-428, 2022 Mar 18.
Article in English | MEDLINE | ID: covidwho-1744553

ABSTRACT

The BNT162b2 (Pfizer-BioNTech) mRNA COVID-19 vaccine was recommended by CDC's Advisory Committee on Immunization Practices for persons aged 12-15 years (referred to as adolescents in this report) on May 12, 2021, and for children aged 5-11 years on November 2, 2021 (1-4). Real-world data on vaccine effectiveness (VE) in these age groups are needed, especially because when the B.1.1.529 (Omicron) variant became predominant in the United States in December 2021, early investigations of VE demonstrated a decline in protection against symptomatic infection for adolescents aged 12-15 years and adults* (5). The PROTECT† prospective cohort of 1,364 children and adolescents aged 5-15 years was tested weekly for SARS-CoV-2, irrespective of symptoms, and upon COVID-19-associated illness during July 25, 2021-February 12, 2022. Among unvaccinated participants (i.e., those who had received no COVID-19 vaccine doses) with any laboratory-confirmed SARS-CoV-2 infection, those with B.1.617.2 (Delta) variant infections were more likely to report COVID-19 symptoms (66%) than were those with Omicron infections (49%). Among fully vaccinated children aged 5-11 years, VE against any symptomatic and asymptomatic Omicron infection 14-82 days (the longest interval after dose 2 in this age group) after receipt of dose 2 of the Pfizer-BioNTech vaccine was 31% (95% CI = 9%-48%), adjusted for sociodemographic characteristics, health information, frequency of social contact, mask use, location, and local virus circulation. Among adolescents aged 12-15 years, adjusted VE 14-149 days after dose 2 was 87% (95% CI = 49%-97%) against symptomatic and asymptomatic Delta infection and 59% (95% CI = 22%-79%) against Omicron infection. Fully vaccinated participants with Omicron infection spent an average of one half day less sick in bed than did unvaccinated participants with Omicron infection. All eligible children and adolescents should remain up to date with recommended COVID-19 vaccinations.


Subject(s)
/administration & dosage , COVID-19/prevention & control , SARS-CoV-2/immunology , Adolescent , Child , Child, Preschool , Cohort Studies , Female , Humans , Male , Prospective Studies , United States
16.
MMWR Morb Mortal Wkly Rep ; 71(9): 352-358, 2022 Mar 04.
Article in English | MEDLINE | ID: covidwho-1727017

ABSTRACT

The efficacy of the BNT162b2 (Pfizer-BioNTech) vaccine against laboratory-confirmed COVID-19 exceeded 90% in clinical trials that included children and adolescents aged 5-11, 12-15, and 16-17 years (1-3). Limited real-world data on 2-dose mRNA vaccine effectiveness (VE) in persons aged 12-17 years (referred to as adolescents in this report) have also indicated high levels of protection against SARS-CoV-2 (the virus that causes COVID-19) infection and COVID-19-associated hospitalization (4-6); however, data on VE against the SARS-CoV-2 B.1.1.529 (Omicron) variant and duration of protection are limited. Pfizer-BioNTech VE data are not available for children aged 5-11 years. In partnership with CDC, the VISION Network* examined 39,217 emergency department (ED) and urgent care (UC) encounters and 1,699 hospitalizations† among persons aged 5-17 years with COVID-19-like illness across 10 states during April 9, 2021-January 29, 2022,§ to estimate VE using a case-control test-negative design. Among children aged 5-11 years, VE against laboratory-confirmed COVID-19-associated ED and UC encounters 14-67 days after dose 2 (the longest interval after dose 2 in this age group) was 46%. Among adolescents aged 12-15 and 16-17 years, VE 14-149 days after dose 2 was 83% and 76%, respectively; VE ≥150 days after dose 2 was 38% and 46%, respectively. Among adolescents aged 16-17 years, VE increased to 86% ≥7 days after dose 3 (booster dose). VE against COVID-19-associated ED and UC encounters was substantially lower during the Omicron predominant period than the B.1.617.2 (Delta) predominant period among adolescents aged 12-17 years, with no significant protection ≥150 days after dose 2 during Omicron predominance. However, in adolescents aged 16-17 years, VE during the Omicron predominant period increased to 81% ≥7 days after a third booster dose. During the full study period, including pre-Delta, Delta, and Omicron predominant periods, VE against laboratory-confirmed COVID-19-associated hospitalization among children aged 5-11 years was 74% 14-67 days after dose 2, with wide CIs that included zero. Among adolescents aged 12-15 and 16-17 years, VE 14-149 days after dose 2 was 92% and 94%, respectively; VE ≥150 days after dose 2 was 73% and 88%, respectively. All eligible children and adolescents should remain up to date with recommended COVID-19 vaccinations, including a booster dose for those aged 12-17 years.


Subject(s)
/administration & dosage , COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , SARS-CoV-2/immunology , /statistics & numerical data , Adolescent , Ambulatory Care/statistics & numerical data , Child , Child, Preschool , Emergency Service, Hospital/statistics & numerical data , Female , Hospitalization/statistics & numerical data , Humans , Immunization, Secondary , Male , United States
17.
Clin Infect Dis ; 75(1): e827-e837, 2022 Aug 24.
Article in English | MEDLINE | ID: covidwho-1722268

ABSTRACT

BACKGROUND: Data on the development of neutralizing antibodies (nAbs) against SARS-CoV-2 after SARS-CoV-2 infection and after vaccination with mRNA COVID-19 vaccines are limited. METHODS: From a prospective cohort of 3975 adult essential and frontline workers tested weekly from August 2020 to March 2021 for SARS-CoV-2 infection by reverse transcription-polymerase chain reaction assay irrespective of symptoms, 497 participants had sera drawn after infection (170), vaccination (327), and after both infection and vaccination (50 from the infection population). Serum was collected after infection and each vaccine dose. Serum-neutralizing antibody titers against USA-WA1/2020-spike pseudotype virus were determined by the 50% inhibitory dilution. Geometric mean titers (GMTs) and corresponding fold increases were calculated using t tests and linear mixed-effects models. RESULTS: Among 170 unvaccinated participants with SARS-CoV-2 infection, 158 (93%) developed nAbs with a GMT of 1003 (95% confidence interval, 766-1315). Among 139 previously uninfected participants, 138 (99%) developed nAbs after mRNA vaccine dose 2 with a GMT of 3257 (2596-4052). GMT was higher among those receiving mRNA-1273 vaccine (GMT, 4698; 3186-6926) compared with BNT162b2 vaccine (GMT, 2309; 1825-2919). Among 32 participants with prior SARS-CoV-2 infection, GMT was 21 655 (14 766-31 756) after mRNA vaccine dose 1, without further increase after dose 2. CONCLUSIONS: A single dose of mRNA vaccine after SARS-CoV-2 infection resulted in the highest observed nAb response. Two doses of mRNA vaccine in previously uninfected participants resulted in higher nAbs to SARS-CoV-2 than after 1 dose of vaccine or SARS-CoV-2 infection alone. nAb response also differed by mRNA vaccine product.


Subject(s)
COVID-19 Vaccines , COVID-19 , 2019-nCoV Vaccine mRNA-1273 , Adult , Antibodies, Neutralizing , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , Humans , Neutralization Tests , Prospective Studies , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Vaccines, Synthetic , mRNA Vaccines
18.
MMWR Morb Mortal Wkly Rep ; 71(7): 255-263, 2022 Feb 18.
Article in English | MEDLINE | ID: covidwho-1689713

ABSTRACT

CDC recommends that all persons aged ≥12 years receive a booster dose of COVID-19 mRNA vaccine ≥5 months after completion of a primary mRNA vaccination series and that immunocompromised persons receive a third primary dose.* Waning of vaccine protection after 2 doses of mRNA vaccine has been observed during the period of the SARS-CoV-2 B.1.617.2 (Delta) variant predominance† (1-5), but little is known about durability of protection after 3 doses during periods of Delta or SARS-CoV-2 B.1.1.529 (Omicron) variant predominance. A test-negative case-control study design using data from eight VISION Network sites§ examined vaccine effectiveness (VE) against COVID-19 emergency department/urgent care (ED/UC) visits and hospitalizations among U.S. adults aged ≥18 years at various time points after receipt of a second or third vaccine dose during two periods: Delta variant predominance and Omicron variant predominance (i.e., periods when each variant accounted for ≥50% of sequenced isolates).¶ Persons categorized as having received 3 doses included those who received a third dose in a primary series or a booster dose after a 2 dose primary series (including the reduced-dosage Moderna booster). The VISION Network analyzed 241,204 ED/UC encounters** and 93,408 hospitalizations across 10 states during August 26, 2021-January 22, 2022. VE after receipt of both 2 and 3 doses was lower during the Omicron-predominant than during the Delta-predominant period at all time points evaluated. During both periods, VE after receipt of a third dose was higher than that after a second dose; however, VE waned with increasing time since vaccination. During the Omicron period, VE against ED/UC visits was 87% during the first 2 months after a third dose and decreased to 66% among those vaccinated 4-5 months earlier; VE against hospitalizations was 91% during the first 2 months following a third dose and decreased to 78% ≥4 months after a third dose. For both Delta- and Omicron-predominant periods, VE was generally higher for protection against hospitalizations than against ED/UC visits. All eligible persons should remain up to date with recommended COVID-19 vaccinations to best protect against COVID-19-associated hospitalizations and ED/UC visits.


Subject(s)
Ambulatory Care/statistics & numerical data , COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Hospitalization/statistics & numerical data , SARS-CoV-2/immunology , /administration & dosage , Adult , Aged , Aged, 80 and over , Case-Control Studies , Emergency Service, Hospital , Female , Humans , Male , Middle Aged , Time Factors , United States , Young Adult
20.
Influenza Other Respir Viruses ; 16(3): 585-593, 2022 05.
Article in English | MEDLINE | ID: covidwho-1621931

ABSTRACT

BACKGROUND: We sought to evaluate the impact of changes in estimates of COVID-19 vaccine effectiveness on the incidence of laboratory-confirmed infection among frontline workers at high risk for SARS-CoV-2. METHODS: We analyzed data from a prospective frontline worker cohort to estimate the incidence of COVID-19 by month as well as the association of COVID-19 vaccination, occupation, demographics, physical distancing, and mask use with infection risk. Participants completed baseline and quarterly surveys, and each week self-collected mid-turbinate nasal swabs and reported symptoms. RESULTS: Among 1018 unvaccinated and 3531 fully vaccinated workers, the monthly incidence of laboratory-confirmed SARS-CoV-2 infection in January 2021 was 13.9 (95% confidence interval [CI]: 10.4-17.4), declining to 0.5 (95% CI -0.4-1.4) per 1000 person-weeks in June. By September 2021, when the Delta variant predominated, incidence had once again risen to 13.6 (95% CI 7.8-19.4) per 1000 person-weeks. In contrast, there was no reportable incidence among fully vaccinated participants at the end of January 2021, and incidence remained low until September 2021 when it rose modestly to 4.1 (95% CI 1.9-3.8) per 1000. Below average facemask use was associated with a higher risk of infection for unvaccinated participants during exposure to persons who may have COVID-19 and vaccinated participants during hours in the community. CONCLUSIONS: COVID-19 vaccination was significantly associated with a lower risk of SARS-CoV-2 infection despite Delta variant predominance. Our data demonstrate the added protective benefit of facemask use among both unvaccinated and vaccinated frontline workers.


Subject(s)
COVID-19 , Emergency Responders , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Delivery of Health Care , Humans , Incidence , Prospective Studies , SARS-CoV-2/genetics , Vaccination
SELECTION OF CITATIONS
SEARCH DETAIL