Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
2.
Nat Commun ; 13(1): 2318, 2022 04 28.
Article in English | MEDLINE | ID: covidwho-1815536

ABSTRACT

Patients with type 2 diabetes (T2D) are characterized by blunted immune responses, which are affected by glycaemic control. Whether glycaemic control influences the response to COVID-19 vaccines and the incidence of SARS-CoV-2 breakthrough infections is unknown. Here we show that poor glycaemic control, assessed as mean HbA1c in the post-vaccination period, is associated with lower immune responses and an increased incidence of SARS-CoV-2 breakthrough infections in T2D patients vaccinated with mRNA-BNT162b2. We report data from a prospective observational study enroling healthcare and educator workers with T2D receiving the mRNA-BNT162b2 vaccine in Campania (Italy) and followed for one year (5 visits, follow-up 346 ± 49 days) after one full vaccination cycle. Considering the 494 subjects completing the study, patients with good glycaemic control (HbA1c one-year mean < 7%) show a higher virus-neutralizing antibody capacity and a better CD4 + T/cytokine response, compared with those with poor control (HbA1c one-year mean ≥ 7%). The one-year mean of HbA1c is linearly associated with the incidence of breakthrough infections (Beta = 0.068; 95% confidence interval [CI], 0.032-0.103; p < 0.001). The comparison of patients with poor and good glycaemic control through Cox regression also show an increased risk for patients with poor control (adjusted hazard ratio [HR], 0.261; 95% CI, 0.097-0.700; p = 0.008). Among other factors, only smoking (HR = 0.290, CI 0.146-0.576 for non-smokers; p < 0.001) and sex (HR = 0.105, CI 0.035-0.317 for females; p < 0.001) are significantly associated with the incidence of breakthrough infections.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 2 , BNT162 Vaccine , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/epidemiology , Female , Glycated Hemoglobin A , Glycemic Control , Humans , RNA, Messenger , SARS-CoV-2
3.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-329936

ABSTRACT

Patients with type 2 diabetes (T2D) are characterized by blunted immune responses, which are affected by glycaemic control. Whether glycaemic control influences the response to COVID-19 vaccines and the incidence of SARS-CoV-2 breakthrough infections is unknown. To explore the association between glycaemic control and immune responses or breakthrough infections in patients with T2D after mRNA-BNT162b2 vaccination, we conducted a prospective observational study among healthcare and educator workers with T2D receiving the mRNA-BNT162b2 vaccine in Campania (Italy). Patients were followed for one year (5 visits) after one full vaccination cycle to evaluate immune responses and monitor the incidence of breakthrough infections. The one-year mean of HbA1c values and canonical risk factors were used to estimate their association with breakthrough infections through Cox regression models adjusted for multiple variables. Overall, 494 subjects were followed up for 346 ± 49 days and completed the study. Patients with good glycaemic control (HbA1c one-year mean < 7%) showed a higher virus-neutralizing antibody capacity and a better CD4 + T/cytokine response, compared with those with poor control (HbA1c one-year mean ≥ 7%). One-year mean of HbA1c was significantly associated with the incidence of breakthrough infections (adjusted hazard ratio [HR], 0.285;95% confidence interval [CI], 0.106 to 0.768;p = 0.013). Among other factors, only smoking status was associated with the incidence of breakthrough infections (HR = 0.360, CI 0.181–0.716 for non-smokers). In summary, poor glycaemic control, assessed as mean HbA1c in the post-vaccination period, is associated with lower immune responses and an increased incidence of SARS-CoV-2 breakthrough infections in T2D patients vaccinated with mRNA-BNT162b2.

4.
J Immunol Methods ; 502: 113230, 2022 03.
Article in English | MEDLINE | ID: covidwho-1720358

ABSTRACT

Innate immune mechanisms are central players in response to the binding of pathogens to pattern-recognition receptors providing a crucial initial block on viral replication. Moreover, innate immune response mobilizes cells of the cellular-mediated immune system, which develop into effector cells that promote viral clearance. Here, we observed circulating leukocyte T cell response in healthy subjects, COVID-19 infected, and in healthy vaccinated subjects. We found a significant CD8+ T cells (p < 0,05) decrease and an augmented CD4+/CD8+ ratio (p < 0,05) in COVID-19 infected group compared with vaccinated subjects. In addition, healthy vaccinated subjects have a significant increased expression of CD8+ T cells, and a reduction of CD4+/CD8+ ratio with respect to subjects previously COVID-19 infected. Central Memory and Terminal Effector Memory cells (TEMRA) increased after vaccine but not among groups.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , /immunology , Adult , Aged , CD4-CD8 Ratio , COVID-19/blood , COVID-19/prevention & control , COVID-19/virology , COVID-19 Vaccines/administration & dosage , Case-Control Studies , Cross-Sectional Studies , Female , Healthy Volunteers , Humans , Immunity, Innate , Immunogenicity, Vaccine , Immunophenotyping , Male , Middle Aged , SARS-CoV-2/immunology , Vaccination
7.
Cardiovasc Diabetol ; 20(1): 99, 2021 05 07.
Article in English | MEDLINE | ID: covidwho-1219133

ABSTRACT

RATIONALE: About 50% of hospitalized coronavirus disease 2019 (COVID-19) patients with diabetes mellitus (DM) developed myocardial damage. The mechanisms of direct SARS-CoV-2 cardiomyocyte infection include viral invasion via ACE2-Spike glycoprotein-binding. In DM patients, the impact of glycation of ACE2 on cardiomyocyte invasion by SARS-CoV-2 can be of high importance. OBJECTIVE: To evaluate the presence of SARS-CoV-2 in cardiomyocytes from heart autopsy of DM cases compared to Non-DM; to investigate the role of DM in SARS-COV-2 entry in cardiomyocytes. METHODS AND RESULTS: We evaluated consecutive autopsy cases, deceased for COVID-19, from Italy between Apr 30, 2020 and Jan 18, 2021. We evaluated SARS-CoV-2 in cardiomyocytes, expression of ACE2 (total and glycosylated form), and transmembrane protease serine protease-2 (TMPRSS2) protein. In order to study the role of diabetes on cardiomyocyte alterations, independently of COVID-19, we investigated ACE2, glycosylated ACE2, and TMPRSS2 proteins in cardiomyocytes from DM and Non-DM explanted-hearts. Finally, to investigate the effects of DM on ACE2 protein modification, an in vitro glycation study of recombinant human ACE2 (hACE2) was performed to evaluate the effects on binding to SARS-CoV-2 Spike protein. The authors included cardiac tissue from 97 autopsies. DM was diagnosed in 37 patients (38%). Fourth-seven out of 97 autopsies (48%) had SARS-CoV-2 RNA in cardiomyocytes. Thirty out of 37 DM autopsy cases (81%) and 17 out of 60 Non-DM autopsy cases (28%) had SARS-CoV-2 RNA in cardiomyocytes. Total ACE2, glycosylated ACE2, and TMPRSS2 protein expressions were higher in cardiomyocytes from autopsied and explanted hearts of DM than Non-DM. In vitro exposure of monomeric hACE2 to 120 mM glucose for 12 days led to non-enzymatic glycation of four lysine residues in the neck domain affecting the protein oligomerization. CONCLUSIONS: The upregulation of ACE2 expression (total and glycosylated forms) in DM cardiomyocytes, along with non-enzymatic glycation, could increase the susceptibility to COVID-19 infection in DM patients by favouring the cellular entry of SARS-CoV2.


Subject(s)
Angiotensin-Converting Enzyme 2/biosynthesis , COVID-19/metabolism , Diabetes Mellitus/metabolism , Myocytes, Cardiac/metabolism , SARS-CoV-2/metabolism , Aged , Amino Acid Sequence , Autopsy , COVID-19/epidemiology , COVID-19/pathology , Cohort Studies , Diabetes Mellitus/pathology , Female , Humans , Italy/epidemiology , Male , Middle Aged , Myocytes, Cardiac/pathology , Protein Binding/physiology , Protein Structure, Secondary
8.
Immunol Lett ; 231: 28-34, 2021 03.
Article in English | MEDLINE | ID: covidwho-1009586

ABSTRACT

Clinical symptoms of COVID-19 include fever, cough, and fatigue which may progress to acute respiratory distress syndrome (ARDS). The main hematological laboratory findings associated with the severe form of disease are represented by lymphopenia and eosinopenia which mostly occur in the elderly population characterized by cardiovascular comorbidities and immunosenescence. Besides, increased levels of D-dimer, procalcitonin, and C reactive protein (CRP) seem to be powerful prognostic biomarkers helping to predict the onset of coagulopathy. The host immune response to SARS-CoV-2 can lead to an aberrant inflammatory response or "cytokine storm" which contributes to the severity of illness. At immunological level, patients affected by a severe form of COVID-19 show poor clinical trajectories characterized by differential "immunotypes" for which T cell response seems to play a critical role in understanding pathogenic mechanisms of disease. Also, patients with mild to severe COVID-19 displayed macrophage activation syndrome (MAS), very low human leukocyte antigen D related (HLA-DR) expression with a parallel reduction of CD04+ lymphocytes, CD19 lymphocytes, and natural killer (NK) cells. Corticosteroids resulted the best therapy for the immune dysregulation whereas repurposing of tocilizumab (IL-6 receptor antagonist) appears to have mixed results in patients with COVID-19. Besides, anticoagulative therapy was associated with reduced in-hospital mortality and need of intubation among COVID-19 patients. Furthermore, the beneficial use of intravenous immunoglobulin (IVIG) and passive immunotherapy with convalescent plasma needs to be validated in large controlled clinical trials. In this review, we summarize the main hematological parameters with a prognostic value in COVID-19 and the basis of immunological reactivity during COVID-19, with a focus on ongoing clinical trials evaluating immune targets as possible therapeutic strategies.


Subject(s)
COVID-19/drug therapy , COVID-19/therapy , Cytokine Release Syndrome/prevention & control , Immunotherapy/methods , SARS-CoV-2/immunology , Antibodies, Monoclonal, Humanized/therapeutic use , Anticoagulants/therapeutic use , COVID-19/complications , COVID-19/diagnosis , COVID-19/immunology , Cytokine Release Syndrome/immunology , Drug Repositioning , Drug Therapy, Combination/methods , Glucocorticoids/therapeutic use , Hospital Mortality , Humans , Immunization, Passive/methods , Immunoglobulins, Intravenous/therapeutic use , Immunosuppressive Agents/therapeutic use , Prognosis , Randomized Controlled Trials as Topic , SARS-CoV-2/isolation & purification , Severity of Illness Index , Treatment Outcome
10.
Br J Anaesth ; 125(6): 1002-1017, 2020 12.
Article in English | MEDLINE | ID: covidwho-927485

ABSTRACT

The emergence of highly pathogenic strains of influenza virus and coronavirus (CoV) has been responsible for large epidemic and pandemic outbreaks characterised by severe pulmonary illness associated with high morbidity and mortality. One major challenge for critical care is to stratify and minimise the risk of multi-organ failure during the stay in the intensive care unit (ICU). Epigenetic-sensitive mechanisms, including deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) methylation, histone modifications, and non-coding RNAs may lead to perturbations of the host immune-related transcriptional programmes by regulating chromatin structure and gene expression patterns. Viruses causing severe pulmonary illness can use epigenetic-regulated mechanisms during host-pathogen interaction to interfere with innate and adaptive immunity, adequacy of inflammatory response, and overall outcome of viral infections. For example, Middle East respiratory syndrome-CoV and H5N1 can affect host antigen presentation through DNA methylation and histone modifications. The same mechanisms would presumably occur in patients with coronavirus disease 2019, in which tocilizumab may epigenetically reduce microvascular damage. Targeting epigenetic pathways by immune modulators (e.g. tocilizumab) or repurposed drugs (e.g. statins) may provide novel therapeutic opportunities to control viral-host interaction during critical illness. In this review, we provide an update on epigenetic-sensitive mechanisms and repurposed drugs interfering with epigenetic pathways which may be clinically suitable for risk stratification and beneficial for treatment of patients affected by severe viral respiratory infections.


Subject(s)
Coronavirus Infections/genetics , Coronavirus Infections/therapy , Epigenesis, Genetic , Genetic Predisposition to Disease/genetics , Influenza, Human/genetics , Influenza, Human/therapy , Pneumonia, Viral/genetics , Pneumonia, Viral/therapy , Respiratory Tract Infections/genetics , Respiratory Tract Infections/therapy , Betacoronavirus/genetics , COVID-19 , Humans , Pandemics , SARS-CoV-2
11.
Interact Cardiovasc Thorac Surg ; 31(6): 755-762, 2020 12 07.
Article in English | MEDLINE | ID: covidwho-889563

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has profoundly affected all health care professionals. The outbreak required a thorough reorganization of the Italian regional local health care system to preserve resources such as ventilators, beds in intensive care units and surgical and anaesthesiological staff. Levels of priority were created, together with a rigorous triage procedure for patients with COVID-19, which led to postponement of all elective procedures. Urgent cases were discussed with the local heart team and percutaneous approaches were selected as the first treatment option to reduce hospital stay. COVID-19 and COVID-19-free pathways were created, including adequate preparation of the operating room, management of anaesthesiological procedures, transportation of patients and disinfection. It was determined that patients with chronic diseases were at increased risk of adverse outcomes. Systemic inflammation, cytokine storm and hypercoagulability associated with COVID-19 increased the risk of heart failure and cardiac death. In this regard, the early use of extracorporeal membrane oxygenation could be life-saving in patients with severe forms of acute respiratory distress syndrome or refractory heart failure. The goal of this paper was to report the Italian experience during the COVID-19 pandemic in the setting of cardiovascular surgery.


Subject(s)
COVID-19/epidemiology , Cardiac Surgical Procedures/methods , Extracorporeal Membrane Oxygenation/methods , Heart Failure/surgery , Pandemics , SARS-CoV-2 , Comorbidity , Heart Failure/epidemiology , Humans , Intensive Care Units , Italy/epidemiology
12.
Ann Med Surg (Lond) ; 57: 236-243, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-694441

ABSTRACT

SARS-CoV-2 betacoronavirus is responsible for the Corona Virus Disease 2019 (COVID-19) which has relevant pathogenic implications for the cardiovascular system. Incidence and severity of COVID-19 are higher in the elderly population (65 years and older). This may be due to higher frequency of comorbidities, but increased frailty and immunosenescence linked with aging may also contribute. Moreover, in elderly individuals, SARS-CoV-2 may adopt different molecular strategies to strongly impact on cardiac aging that culminate in exacerbating a pro-inflammatory state (cytokine storm activation), which, in turn, may lead to pulmonary vascular endothelialitis, microangiopathy, diffuse thrombosis, myocarditis, heart failure, cardiac arrhythmias, and acute coronary syndromes. All these events are particularly relevant in elderly patients, and deserve targeted cardiovascular treatments and specific management of repurposed drugs against COVID-19. We discuss current evidence about the cardiovascular involvement during COVID-19, and elaborate on clinical implications in elderly patients.

13.
Pathol Res Pract ; 216(9): 153086, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-649184

ABSTRACT

A novel coronavirus SARS-CoV-2 causes acute respiratory distress syndrome (ARDS) with cardiovascular and multiple organ failure till death. The main mechanisms of virus internalization and interaction with the host are down-regulation or upregulation of the ACE2 receptor, the surface glycoprotein competition mechanism for the binding of porphyrin to iron in heme formation as well as interference with the immune system. The interference on renin-angiotensin-aldosterone system (RAAS) activation, heme formation, and the immune response is responsible for infection diffusion, endothelial dysfunction, vasoconstriction, oxidative damage and releasing of inflammatory mediators. The main pathological findings are bilateral interstitial pneumonia with diffuse alveolar damage (DAD). Because ACE receptor is also present in the endothelium of other districts as well as in different cell types, and as porphyrins are transporters in the blood and other biological liquids of iron forming heme, which is important in the assembly of the hemoglobin, myoglobin and the cytochromes, multiorgan damage occurs both primitive and secondary to lung damage. More relevantly, myocarditis, acute myocardial infarction, thromboembolism, and disseminated intravasal coagulation (DIC) are described as complications in patients with poor outcome. Here, we investigated the role of SARSCoV-2 on the cardiovascular system and in patients with cardiovascular comorbidities, and possible drug interference on the heart.


Subject(s)
Betacoronavirus/pathogenicity , Cardiovascular Diseases/etiology , Coronavirus Infections/virology , Lung/virology , Pneumonia, Viral/virology , COVID-19 , Cardiovascular Diseases/metabolism , Cardiovascular System/virology , Coronavirus Infections/complications , Humans , Lung/metabolism , Pandemics , Pneumonia, Viral/complications , Renin-Angiotensin System/physiology , SARS-CoV-2
14.
Arch Gerontol Geriatr ; 90: 104174, 2020.
Article in English | MEDLINE | ID: covidwho-625179
SELECTION OF CITATIONS
SEARCH DETAIL