Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Add filters

Document Type
Year range
J Biol Chem ; 299(7): 104886, 2023 Jun 02.
Article in English | MEDLINE | ID: covidwho-20230741


The effect of mutations of the catalytic dyad residues of SARS-CoV-2 main protease (MProWT) on the thermodynamics of binding of covalent inhibitors comprising nitrile [nirmatrelvir (NMV), NBH2], aldehyde (GC373), and ketone (BBH1) warheads to MPro is examined together with room temperature X-ray crystallography. When lacking the nucleophilic C145, NMV binding is ∼400-fold weaker corresponding to 3.5 kcal/mol and 13.3 °C decrease in free energy (ΔG) and thermal stability (Tm), respectively, relative to MProWT. The H41A mutation results in a 20-fold increase in the dissociation constant (Kd), and 1.7 kcal/mol and 1.4 °C decreases in ΔG and Tm, respectively. Increasing the pH from 7.2 to 8.2 enhances NMV binding to MProH41A, whereas no significant change is observed in binding to MProWT. Structures of the four inhibitor complexes with MPro1-304/C145A show that the active site geometries of the complexes are nearly identical to that of MProWT with the nucleophilic sulfur of C145 positioned to react with the nitrile or the carbonyl carbon. These results support a two-step mechanism for the formation of the covalent complex involving an initial non-covalent binding followed by a nucleophilic attack by the thiolate anion of C145 on the warhead carbon. Noncovalent inhibitor ensitrelvir (ESV) exhibits a binding affinity to MProWT that is similar to NMV but differs in its thermodynamic signature from NMV. The binding of ESV to MProC145A also results in a significant, but smaller, increase in Kd and decrease in ΔG and Tm, relative to NMV.

J Mol Biol ; 434(24): 167876, 2022 Dec 30.
Article in English | MEDLINE | ID: covidwho-2131576


We recently demonstrated that inhibitor binding reorganizes the oxyanion loop of a monomeric catalytic domain of SARS CoV-2 main protease (MPro) from an unwound (E) to a wound (active, E*) conformation, independent of dimerization. Here we assess the effect of the flanking N-terminal residues, to imitate the MPro precursor prior to its autoprocessing, on conformational equilibria rendering stability and inhibitor binding. Thermal denaturation (Tm) of C145A mutant, unlike H41A, increases by 6.8 °C, relative to wild-type mature dimer. An inactivating H41A mutation to maintain a miniprecursor containing TSAVL[Q or E] of the flanking nsp4 sequence in an intact form [(-6)MProH41A and (-6*)MProH41A, respectively], and its corresponding mature MProH41A were systematically examined. While the H41A mutation exerts negligible effect on Tm and dimer dissociation constant (Kdimer) of MProH41A, relative to the wild type MPro, both miniprecursors show a 4-5 °C decrease in Tm and > 85-fold increase in Kdimer as compared to MProH41A. The Kd for the binding of the covalent inhibitor GC373 to (-6*)MProH41A increases ∼12-fold, relative to MProH41A, concomitant with its dimerization. While the inhibitor-free dimer exhibits a state in transit from E to E* with a conformational asymmetry of the protomers' oxyanion loops and helical domains, inhibitor binding restores the asymmetry to mature-like oxyanion loop conformations (E*) but not of the helical domains. Disorder of the terminal residues 1-2 and 302-306 observed in both structures suggest that N-terminal autoprocessing is tightly coupled to the E-E* equilibrium and stable dimer formation.

COVID-19 , SARS-CoV-2 , Humans , Catalytic Domain , SARS-CoV-2/genetics , Crystallography, X-Ray , Peptide Hydrolases/chemistry
Commun Biol ; 5(1): 976, 2022 09 16.
Article in English | MEDLINE | ID: covidwho-2036926


The monomeric catalytic domain (residues 1-199) of SARS-CoV-2 main protease (MPro1-199) fused to 25 amino acids of its flanking nsp4 region mediates its autoprocessing at the nsp4-MPro1-199 junction. We report the catalytic activity and the dissociation constants of MPro1-199 and its analogs with the covalent inhibitors GC373 and nirmatrelvir (NMV), and the estimated monomer-dimer equilibrium constants of these complexes. Mass spectrometry indicates the presence of the accumulated adduct of NMV bound to MProWT and MPro1-199 and not of GC373. A room temperature crystal structure reveals a native-like fold of the catalytic domain with an unwound oxyanion loop (E state). In contrast, the structure of a covalent complex of the catalytic domain-GC373 or NMV shows an oxyanion loop conformation (E* state) resembling the full-length mature dimer. These results suggest that the E-E* equilibrium modulates autoprocessing of the main protease when converting from a monomeric polyprotein precursor to the mature dimer.

COVID-19 , Amino Acids , Catalytic Domain , Coronavirus 3C Proteases , Humans , Peptide Hydrolases , Polyproteins , SARS-CoV-2/genetics
Commun Biol ; 5(1): 160, 2022 03 01.
Article in English | MEDLINE | ID: covidwho-1721596


The role of dimer formation for the onset of catalytic activity of SARS-CoV-2 main protease (MProWT) was assessed using a predominantly monomeric mutant (MProM). Rates of MProWT and MProM catalyzed hydrolyses display substrate saturation kinetics and second-order dependency on the protein concentration. The addition of the prodrug GC376, an inhibitor of MProWT, to MProM leads to an increase in the dimer population and catalytic activity with increasing inhibitor concentration. The activity reaches a maximum corresponding to a dimer population in which one active site is occupied by the inhibitor and the other is available for catalytic activity. This phase is followed by a decrease in catalytic activity due to the inhibitor competing with the substrate. Detailed kinetics and equilibrium analyses are presented and a modified Michaelis-Menten equation accounts for the results. These observations provide conclusive evidence that dimer formation is coupled to catalytic activity represented by two equivalent active sites.

Coronavirus 3C Proteases/metabolism , Catalysis , Catalytic Domain , Circular Dichroism , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/chemistry , Coronavirus 3C Proteases/genetics , Models, Molecular , Mutation , Pyrrolidines/chemistry , Sulfonic Acids/chemistry , Thermodynamics