Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
2.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-330045

ABSTRACT

Background: Understanding symptomatology and accuracy of clinical case definitions for community COVID-19 cases is important for Test, Trace and Isolate (TTI) and future targeting of early antiviral treatment.   Methods: : Community cohort participants prospectively recorded daily symptoms and swab results (mainly undertaken through the UK TTI system).  We compared symptom frequency, severity, timing, and duration in test positive and negative illnesses.  We compared the test performance of the current UK TTI case definition (cough, high temperature, or loss of or altered sense of smell or taste) with a wider definition adding muscle aches, chills, headache, or loss of appetite.     Results: : Among 9706 swabbed illnesses, including 973 SARS-CoV-2 positives, symptoms were more common, severe and longer lasting in swab positive than negative illnesses.  Cough, headache, fatigue, and muscle aches were the most common symptoms in positive illnesses but also common in negative illnesses. Conversely, high temperature, loss or altered sense of smell or taste and loss of appetite were less frequent in positive illnesses, but comparatively even less frequent in negative illnesses.  The current UK definition had 81% sensitivity and 47% specificity versus 93% and 27% respectively for the broader definition. 1.7-fold more illnesses met the broader case definition than the current definition.  Conclusions: : Symptoms alone cannot reliably distinguish COVID-19 from other respiratory illnesses. Adding additional symptoms to case definitions could identify more infections, but with a large increase in the number needing testing and the number of unwell individuals and contacts self-isolating whilst awaiting results.

3.
EuropePMC;
Preprint in English | EuropePMC | ID: ppcovidwho-328665

ABSTRACT

Background: To retain the spread of SARS-CoV-2, fast, sensitive and cost-effective testing is essential, particularly in resource limited settings (RLS). Current standard nucleic acid-based RT-PCR assays, although highly sensitive and specific, require transportation of samples to specialised laboratories, trained staff and expensive reagents. The latter are often not readily available in low- and middle-income countries and this may significantly impact on the successful disease management in these settings. Various studies have suggested a SARS-CoV-2 loop mediated isothermal amplification (LAMP) assay as an alternative method to RT-PCR. Methods Four previously published primer pairs were used for detection of SARS-CoV-2 in the LAMP assay. To determine optimal conditions, different temperatures, sample input and incubation times were tested. Ninety-two extracted RNA samples from St. George's Hospital, London, 10 non-extracted nasopharyngeal swab samples from Great Ormond Street Hospital for Children, London, and 92 non-extracted samples from Queen Elisabeth Central Hospital (QECH), Malawi, which have previously been tested for SARS-Cov-2 by qRT-PCR, were analysed in the LAMP assay. Results In this study we report the optimisation of an extraction-free colourimetric SARS-CoV-2 LAMP assay and demonstrated that a lower limit of detection between 10-100 copies/µL of SARS-CoV-2 could be readily detected by a colour change of the reaction within as little as 30min. We further show that this assay could be quickly established in Malawi, as no expensive equipment is necessary. We tested 92 clinical samples from QECH and showed the sensitivity and specificity of the assay to be 98.4% and 86.7%, respectively. Some viral transport media, used routinely to stabilise RNA in clinical samples during transportation, caused a non-specific colour-change in the LAMP reaction and therefore we suggest collecting samples in phosphate buffered saline (which did not affect the colour) as the assay allows immediate sample analysis on-site. Conclusion SARS-CoV-2 LAMP is a cheap and reliable assay that can be readily employed in RLS to improve disease monitoring and management.

4.
EuropePMC;
Preprint in English | EuropePMC | ID: ppcovidwho-328368

ABSTRACT

Background: To determine the impact of the COVID-19 pandemic on the population with chronic Hepatitis B virus (HBV) infection under hospital follow-up in the UK, we quantified the coverage and frequency of measurements of biomarkers used for routine surveillance (alanine transferase [ALT] and HBV viral load). Methods: : We used anonymized electronic health record data from the National Institute for Health Research (NIHR) Health Informatics Collaborative (HIC) pipeline representing five UK National Health Service (NHS) Trusts. Results: : We report significant reductions in surveillance of both biomarkers during the pandemic compared to pre-COVID-19 years, both in terms of the proportion of patients who had ≥1 measurement annually, and the mean number of measurements per patient. Conclusions: : These results demonstrate the real-time utility of HIC data in monitoring health-care provision, and support interventions to provide catch-up services to minimise the impact of the pandemic. Further investigation is required to determine whether these disruptions will be associated with increased rates of adverse chronic HBV outcomes.

5.
EuropePMC;
Preprint in English | EuropePMC | ID: ppcovidwho-327612

ABSTRACT

Introduction: Viral sequencing of SARS-CoV-2 has been used for outbreak investigation, but there is limited evidence supporting routine use for infection prevention and control (IPC) within hospital settings. Methods We conducted a prospective non-randomised trial of sequencing at 14 acute UK hospital trusts. Sites each had a 4-week baseline data-collection period, followed by intervention periods comprising 8 weeks of 'rapid' (<48h) and 4 weeks of 'longer-turnaround' (5-10 day) sequencing using a sequence reporting tool (SRT). Data were collected on all hospital onset COVID-19 infections (HOCIs;detected ≥48h from admission). The impact of the sequencing intervention on IPC knowledge and actions, and on incidence of probable/definite hospital-acquired infections (HAIs) was evaluated. Results A total of 2170 HOCI cases were recorded from October 2020-April 2021, with sequence reports returned for 650/1320 (49.2%) during intervention phases. We did not detect a statistically significant change in weekly incidence of HAIs in longer-turnaround (IRR 1.60, 95%CI 0.85-3.01;P=0.14) or rapid (0.85, 0.48-1.50;P=0.54) intervention phases compared to baseline phase. However, IPC practice was changed in 7.8% and 7.4% of all HOCI cases in rapid and longer-turnaround phases, respectively, and 17.2% and 11.6% of cases where the report was returned. In a per-protocol sensitivity analysis there was an impact on IPC actions in 20.7% of HOCI cases when the SRT report was returned within 5 days. Conclusion While we did not demonstrate a direct impact of sequencing on the incidence of nosocomial transmission, our results suggest that sequencing can inform IPC response to HOCIs, particularly when returned within 5 days.

6.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-322658

ABSTRACT

Background: Recently emerging SARS-CoV-2 variants have been associated with an increased rate of transmission within the community. Little is known about the impact their increased infectivity has on transmission within hospitals.Methods: We collected viral sequences and epidemiological data of patients with community and healthcare associated SARS-CoV-2 infections, sampled from 16th November 2020 to 10th January 2021, from nine hospitals participating in the COG-UK HOCI study. Outbreaks were identified using ward information, lineage and pairwise genetic differences between viral sequences.Findings: Mixed effects logistic regression analysis of 4184 sequences showed healthcare-acquired infections were no more likely to be identified as the Alpha variant than community acquired infections. Nosocomial outbreaks were investigated based on overlapping ward stay and SARS-CoV-2 genome sequence similarity. There was no significant difference in the number of patients involved in outbreaks caused by the Alpha variant compared to outbreaks caused by other lineages.Interpretation: Notwithstanding evidence from community studies that the Alpha variant is more transmissible, we find no evidence to support it causing more nosocomial transmission than previous lineages. This suggests that the stringent infection prevention measures already in place in UK hospitals contained the spread of the Alpha variant as effectively as other less transmissible lineages, providing reassurance of their efficacy against emerging variants of concern.Funding Information: COG-UK HOCI funded by COG-UK consortium. The COG-UK consortium is supported by funding from the Medical Research Council (MRC) part of UK Research & Innovation (UKRI), the National Institute of Health Research (NIHR) and Genome Research Limited, operating as the Wellcome Sanger Institute.Declaration of Interests: None to declare. Ethics Approval Statement: Ethical approval for the HOCI study was provided by REC 20/EE/0118.

7.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-320995

ABSTRACT

Objectives: To determine clinical and laboratory features of pregnant woman with COVID-19 who require respiratory support. To recommend a management strategy that optimises maternal and fetal outcomes. Design: An observational cohort study of 7000 maternities between 1st March and 1st July 2020. Setting: Five maternity centres across a maternal medicine network in north-central London, UK Population: 69 pregnant women with confirmed acute SARS-COV2 Methods: Review of electronic healthcare records Main Outcome Measures: Clinical and laboratory features, maternal and fetal outcomes. Results: Respiratory support was needed by 15/69 . This cohort was more likely to present with dyspnoea (10/15 vs 10/54, p<0.001), a lower lymphocyte count (0.90.1 vs 1.40.1 x 109 cells/L;p<0.01) and hypokalaemia (3.80.1 vs 4.00.1 mmol/l, p<0.05). Radiological evidence of lung consolidation did not identify women in need of respiratory support. Women on respiratory support underwent childbirth at an earlier gestation than those who did not (36+4 vs 39+5 weeks, p<0.001), and required emergency c-section (6/15 vs 8/54, p<0.05). Childbirth did not improve respiratory function in those with severe disease, with 3 women remaining on invasive ventilation despite childbirth. Conclusions: Routine clinical data can identify pregnant women at risk of severe COVID-19. Pregnant women should be offered the same treatment as non-pregnant patients but iatrogenic childbirth should not be the default for women with severe disease. We propose a management pathway for pregnant women with severe COVID-19.

8.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-307421

ABSTRACT

The ongoing pandemic of SARS-CoV-2 calls for rapid and cost-effective methods to accurately identify infected individuals. The vast majority of patient samples is assessed for viral RNA presence by RT-qPCR. Our biomedical research institute, in collaboration between partner hospitals and an accredited clinical diagnostic laboratory, established a diagnostic testing pipeline that has reported on more than 252,000 RT-qPCR results since its commencement at the beginning of April 2020. However, due to ongoing demand and competition for critical resources, alternative testing strategies were sought. In this work, we present a clinically-validated procedure for high-throughput SARS-CoV-2 detection by RT-LAMP that is robust, reliable, repeatable, specific, and inexpensive.

9.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-305830

ABSTRACT

Background: For a targeted therapeutic strategy to show outcome benefit, there needs to be a strong biological and pathogenic rationale to underpin and direct personalised treatments. Relevant biological disease features and biomarkers identify patients for the correct therapeutic, delivered at an appropriate time, dose and duration for maximal efficacy. We evaluated whether serum levels of a wide range of proposed therapeutic targets in COVID-19 discriminated between patients with mild and severe disease or death.Methods: A search of clinicaltrials.gov identified immunological drug targets in COVID-19. We subsequently conducted an observational study investigating the association of serum biomarkers relating to putative therapeutic biomarkers with illness severity and outcome.Results: A search of clinicaltrials.gov identified 477 randomized trials assessing immunomodulatory therapies, including 168 different therapies against 83 different pathways. We measured levels of ten cytokines/signalling proteins including those related to the most common therapeutic targets (GM-CSF, IFN-α2a, IFN-β, IFN-γ, IL-1β, IL-1ra, IL-6, IL-7, IL-8, TNF-α), immunoglobulin G ( IgG) antibodies directed against either the COVID-19 spike protein (S1) or nucleocapsid protein (N), and neutralization titres of antibodies within the first 5 days of hospital admission in 86 patients, 44 (51%) with mild disease and 42 (49%) with severe disease. Six of the ten cytokine/signalling protein markers measured (IL-6, IL-7, IL-8, interferon- a, interferon- b, IL -1ra ) discriminated between patients with mild and severe disease, although most were similar or only modestly raised above that seen in healthy volunteers. A similar proportion of patients with mild or severe disease had detectable S1 or N IgG antibodies with equivalent levels between groups. Neutralization titres were higher among patients with severe disease.Interpretation: Some therapeutic and prognostic biomarkers may be potentially useful in identifying patients who may benefit from specific immunomodulatory therapies in COVID-19 disease, particularly interleukin-6. It is however noteworthy that absolute values of a number of identified biomarkers were either appropriately elevated or within the normal range. This implies that these immunomodulatory treatments may be of limited benefit.Funding: National Institute for Health Research UCLH Biomedical Research Centre (BRC756/HI/MS/101440) and the UCL Coronavirus Response Fund.Declaration of Interests: MeS reports grants and advisory board fees from NewB, grants from the Defence Science and Technology Laboratory, Critical Pressure, Apollo Therapeutics, advisory board and speaker fees (paid to his institution) from Amormed, Biotest, GE, Baxter, Roche, and Bayer, and honorarium for chairing a data monitoring and safety committee from Shionogi. All other authors have nothing to declare. Ethics Approval Statement: Ethical approval was received from the London-Westminster Research Ethics Committee, the Health Research Authority and Health and Care Research Wales (HCRW) on 2nd July 2020 (REC reference 20/HRA/2505, IRAS ID 284088). The SAFER study protocol was approved by the NHS Health Research Authority (ref 20/SC/0147) on 26 March 2020. Ethical oversight was provided by the South- Central Berkshire Research Ethics Committee.

11.
Wellcome Open Res ; 6: 9, 2021.
Article in English | MEDLINE | ID: covidwho-1502788

ABSTRACT

The ongoing pandemic of SARS-CoV-2 calls for rapid and cost-effective methods to accurately identify infected individuals. The vast majority of patient samples is assessed for viral RNA presence by RT-qPCR. Our biomedical research institute, in collaboration between partner hospitals and an accredited clinical diagnostic laboratory, established a diagnostic testing pipeline that has reported on more than 252,000 RT-qPCR results since its commencement at the beginning of April 2020. However, due to ongoing demand and competition for critical resources, alternative testing strategies were sought. In this work, we present a clinically-validated procedure for high-throughput SARS-CoV-2 detection by RT-LAMP in 25 minutes that is robust, reliable, repeatable, sensitive, specific, and inexpensive.

13.
J Infect ; 83(6): 693-700, 2021 12.
Article in English | MEDLINE | ID: covidwho-1446866

ABSTRACT

OBJECTIVES: Recently emerging SARS-CoV-2 variants have been associated with an increased rate of transmission within the community. We sought to determine whether this also resulted in increased transmission within hospitals. METHODS: We collected viral sequences and epidemiological data of patients with community and healthcare associated SARS-CoV-2 infections, sampled from 16th November 2020 to 10th January 2021, from nine hospitals participating in the COG-UK HOCI study. Outbreaks were identified using ward information, lineage and pairwise genetic differences between viral sequences. RESULTS: Mixed effects logistic regression analysis of 4184 sequences showed healthcare-acquired infections were no more likely to be identified as the Alpha variant than community acquired infections. Nosocomial outbreaks were investigated based on overlapping ward stay and SARS-CoV-2 genome sequence similarity. There was no significant difference in the number of patients involved in outbreaks caused by the Alpha variant compared to outbreaks caused by other lineages. CONCLUSIONS: We find no evidence to support it causing more nosocomial transmission than previous lineages. This suggests that the stringent infection prevention measures already in place in UK hospitals contained the spread of the Alpha variant as effectively as other less transmissible lineages, providing reassurance of their efficacy against emerging variants of concern.


Subject(s)
COVID-19 , Cross Infection , Cross Infection/epidemiology , Hospitals , Humans , SARS-CoV-2 , United Kingdom/epidemiology
15.
Med (N Y) ; 2(9): 1093-1109.e6, 2021 09 10.
Article in English | MEDLINE | ID: covidwho-1404795

ABSTRACT

BACKGROUND: Differences in humoral immunity to coronaviruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), between children and adults remain unexplained, and the effect of underlying immune dysfunction or suppression is unknown. Here, we sought to examine the antibody immune competence of children and adolescents with prevalent inflammatory rheumatic diseases, juvenile idiopathic arthritis (JIA), juvenile dermatomyositis (JDM), and juvenile systemic lupus erythematosus (JSLE) against the seasonal human coronavirus (HCoV)-OC43 that frequently infects this age group. METHODS: Sera were collected from JIA (n = 118), JDM (n = 49), and JSLE (n = 30) patients and from healthy control (n = 54) children and adolescents prior to the coronavirus disease 19 (COVID-19) pandemic. We used sensitive flow-cytometry-based assays to determine titers of antibodies that reacted with the spike and nucleoprotein of HCoV-OC43 and cross-reacted with the spike and nucleoprotein of SARS-CoV-2, and we compared them with respective titers in sera from patients with multisystem inflammatory syndrome in children and adolescents (MIS-C). FINDINGS: Despite immune dysfunction and immunosuppressive treatment, JIA, JDM, and JSLE patients maintained comparable or stronger humoral responses than healthier peers, which was dominated by immunoglobulin G (IgG) antibodies to HCoV-OC43 spike, and harbored IgG antibodies that cross-reacted with SARS-CoV-2 spike. In contrast, responses to HCoV-OC43 and SARS-CoV-2 nucleoproteins exhibited delayed age-dependent class-switching and were not elevated in JIA, JDM, and JSLE patients, which argues against increased exposure. CONCLUSIONS: Consequently, autoimmune rheumatic diseases and their treatment were associated with a favorable ratio of spike to nucleoprotein antibodies. FUNDING: This work was supported by a Centre of Excellence Centre for Adolescent Rheumatology Versus Arthritis grant, 21593, UKRI funding reference MR/R013926/1, the Great Ormond Street Children's Charity, Cure JM Foundation, Myositis UK, Lupus UK, and the NIHR Biomedical Research Centres at GOSH and UCLH. This work was supported by the Francis Crick Institute, which receives its core funding from Cancer Research UK, the UK Medical Research Council, and the Wellcome Trust.


Subject(s)
Autoimmune Diseases , COVID-19 , Coronavirus OC43, Human , Rheumatic Diseases , Adolescent , Adult , Antibodies, Viral , Antibody Formation , COVID-19/complications , Child , Humans , Immunoglobulin G , Nucleoproteins , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Systemic Inflammatory Response Syndrome
16.
Sci Adv ; 7(22)2021 05.
Article in English | MEDLINE | ID: covidwho-1388434

ABSTRACT

The coronaviral spike is the dominant viral antigen and the target of neutralizing antibodies. We show that SARS-CoV-2 spike binds biliverdin and bilirubin, the tetrapyrrole products of heme metabolism, with nanomolar affinity. Using cryo-electron microscopy and x-ray crystallography, we mapped the tetrapyrrole interaction pocket to a deep cleft on the spike N-terminal domain (NTD). At physiological concentrations, biliverdin significantly dampened the reactivity of SARS-CoV-2 spike with immune sera and inhibited a subset of neutralizing antibodies. Access to the tetrapyrrole-sensitive epitope is gated by a flexible loop on the distal face of the NTD. Accompanied by profound conformational changes in the NTD, antibody binding requires relocation of the gating loop, which folds into the cleft vacated by the metabolite. Our results indicate that SARS-CoV-2 spike NTD harbors a dominant epitope, access to which can be controlled by an allosteric mechanism that is regulated through recruitment of a metabolite.


Subject(s)
COVID-19/immunology , Heme/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/metabolism , Antibodies, Neutralizing/immunology , Bilirubin/metabolism , Biliverdine/metabolism , Cryoelectron Microscopy , Crystallography, X-Ray , Epitopes , Humans , Immune Sera , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity
17.
Wellcome Open Research ; 6, 2021.
Article in English | PMC | ID: covidwho-1389814

ABSTRACT

The ongoing pandemic of SARS-CoV-2 calls for rapid and cost-effective methods to accurately identify infected individuals. The vast majority of patient samples is assessed for viral RNA presence by RT-qPCR. Our biomedical research institute, in collaboration between partner hospitals and an accredited clinical diagnostic laboratory, established a diagnostic testing pipeline that has reported on more than 252,000 RT-qPCR results since its commencement at the beginning of April 2020. However, due to ongoing demand and competition for critical resources, alternative testing strategies were sought. In this work, we present a clinically-validated procedure for high-throughput SARS-CoV-2 detection by RT-LAMP that is robust, reliable, repeatable, specific, and inexpensive.

18.
Br J Anaesth ; 127(6): 834-844, 2021 12.
Article in English | MEDLINE | ID: covidwho-1377666

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific antibodies, particularly those preventing interaction between the viral spike receptor-binding domain and the host angiotensin-converting enzyme 2 receptor, may prevent viral entry into host cells and disease progression. METHODS: We performed a systematic review, meta-analysis, trial sequential analysis (TSA), and meta-regression of RCTs to evaluate the benefit of convalescent plasma for COVID-19. The primary outcome was 28-30 day mortality. Secondary outcomes included need for mechanical ventilation and ICU admission. Data sources were PubMed, Embase, MedRxiv, and the Cochrane library on July 2, 2021. RESULTS: We identified 17 RCTs that recruited 15 587 patients with 8027 (51.5%) allocated to receive convalescent plasma. Convalescent plasma use was not associated with a mortality benefit (24.7% vs 25.5%; odds ratio [OR]=0.94 [0.85-1.04]; P=0.23; I2=4%; TSA adjusted confidence interval [CI], 0.84-1.05), or reduction in need for mechanical ventilation (15.7% vs 15.4%; OR=1.01 [0.92-1.11]; P=0.82; I2=0%; TSA adjusted CI, 0.91-1.13), or ICU admission (22.4% vs 16.7%; OR=0.80 [0.21-3.09]; P=0.75; I2=63%; TSA adjusted CI, 0.0-196.05). Meta-regression did not reveal association with titre of convalescent plasma, timing of administration, or risk of death and treatment effect (P>0.05). Risk of bias was high in most studies. CONCLUSIONS: In patients with COVID-19, there was no clear mortality benefit associated with convalescent plasma treatment. In patients with mild disease, convalescent plasma did not prevent either the need for mechanical ventilation or ICU admission. CLINICAL TRIAL REGISTRATION: CRD42021234201 (PROSPERO).


Subject(s)
COVID-19/therapy , Randomized Controlled Trials as Topic/methods , COVID-19/diagnosis , COVID-19/mortality , Humans , Immunization, Passive/mortality , Regression Analysis , Respiration, Artificial/mortality , Respiration, Artificial/trends , Treatment Outcome
19.
Brain Commun ; 3(3): fcab099, 2021.
Article in English | MEDLINE | ID: covidwho-1358433

ABSTRACT

Preliminary pathological and biomarker data suggest that SARS-CoV-2 infection can damage the nervous system. To understand what, where and how damage occurs, we collected serum and CSF from patients with COVID-19 and characterized neurological syndromes involving the PNS and CNS (n = 34). We measured biomarkers of neuronal damage and neuroinflammation, and compared these with non-neurological control groups, which included patients with (n = 94) and without (n = 24) COVID-19. We detected increased concentrations of neurofilament light, a dynamic biomarker of neuronal damage, in the CSF of those with CNS inflammation (encephalitis and acute disseminated encephalomyelitis) [14 800 pg/ml (400, 32 400)], compared to those with encephalopathy [1410 pg/ml (756, 1446)], peripheral syndromes (Guillain-Barré syndrome) [740 pg/ml (507, 881)] and controls [872 pg/ml (654, 1200)]. Serum neurofilament light levels were elevated across patients hospitalized with COVID-19, irrespective of neurological manifestations. There was not the usual close correlation between CSF and serum neurofilament light, suggesting serum neurofilament light elevation in the non-neurological patients may reflect peripheral nerve damage in response to severe illness. We did not find significantly elevated levels of serum neurofilament light in community cases of COVID-19 arguing against significant neurological damage. Glial fibrillary acidic protein, a marker of astrocytic activation, was not elevated in the CSF or serum of any group, suggesting astrocytic activation is not a major mediator of neuronal damage in COVID-19.

20.
Crit Care Explor ; 3(8): e0488, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1356719

ABSTRACT

OBJECTIVES: Multiple mechanisms have been proposed to explain disease severity in coronavirus disease 2019. Therapeutic approaches need to be underpinned by sound biological rationale. We evaluated whether serum levels of a range of proposed coronavirus disease 2019 therapeutic targets discriminated between patients with mild or severe disease. DESIGN: A search of ClinicalTrials.gov identified coronavirus disease 2019 immunological drug targets. We subsequently conducted a retrospective observational cohort study investigating the association of serum biomarkers within the first 5 days of hospital admission relating to putative therapeutic biomarkers with illness severity and outcome. SETTING: University College London, a tertiary academic medical center in the United Kingdom. PATIENTS: Patients admitted to hospital with a diagnosis of coronavirus disease 2019. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Eighty-six patients were recruited, 44 (51%) with mild disease and 42 (49%) with severe disease. We measured levels of 10 cytokines/signaling proteins related to the most common therapeutic targets (granulocyte-macrophage colony-stimulating factor, interferon-α2a, interferon-ß, interferon-γ, interleukin-1ß, interleukin-1 receptor antagonist, interleukin-6, interleukin-7, interleukin-8, tumor necrosis factor-α), immunoglobulin G antibodies directed against either coronavirus disease 2019 spike protein or nucleocapsid protein, and neutralization titers of antibodies. Four-hundred seventy-seven randomized trials, including 168 different therapies against 83 different pathways, were identified. Six of the 10 markers (interleukin-6, interleukin-7, interleukin-8, interferon-α2a, interferon-ß, interleukin-1 receptor antagonist) discriminated between patients with mild and severe disease, although most were similar or only modestly raised above that seen in healthy volunteers. A similar proportion of patients with mild or severe disease had detectable spike protein or nucleocapsid protein immunoglobulin G antibodies with equivalent levels between groups. Neutralization titers were higher among patients with severe disease. CONCLUSIONS: Some therapeutic and prognostic biomarkers may be useful in identifying coronavirus disease 2019 patients who may benefit from specific immunomodulatory therapies, particularly interleukin-6. However, biomarker absolute values often did not discriminate between patients with mild and severe disease or death, implying that these immunomodulatory treatments may be of limited benefit.

SELECTION OF CITATIONS
SEARCH DETAIL