Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Front Surg ; 9: 889999, 2022.
Article in English | MEDLINE | ID: covidwho-1862702

ABSTRACT

Early in the coronavirus disease 2019 (COVID-19) pandemic, global governing bodies prioritized transmissibility-based precautions and hospital capacity as the foundation for delay of elective procedures. As elective surgical volumes increased, convalescent COVID-19 patients faced increased postoperative morbidity and mortality and clinicians had limited evidence for stratifying individual risk in this population. Clear evidence now demonstrates that those recovering from COVID-19 have increased postoperative morbidity and mortality. These data-in conjunction with the recent American Society of Anesthesiologists guidelines-offer the evidence necessary to expand the early pandemic guidelines and guide the surgeon's preoperative risk assessment. Here, we argue elective surgeries should still be delayed on a personalized basis to maximize postoperative outcomes. We outline a framework for stratifying the individual COVID-19 patient's fitness for surgery based on the symptoms and severity of acute or convalescent COVID-19 illness, coagulopathy assessment, and acuity of the surgical procedure. Although the most common manifestation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is COVID-19 pneumonitis, every system in the body is potentially afflicted by an endotheliitis. This endothelial derangement most often manifests as a hypercoagulable state on admission with associated occult and symptomatic venous and arterial thromboembolisms. The delicate balance between hyper and hypocoagulable states is defined by the local immune-thrombotic crosstalk that results commonly in a hemostatic derangement known as fibrinolytic shutdown. In tandem, the hemostatic derangements that occur during acute COVID-19 infection affect not only the timing of surgical procedures, but also the incidence of postoperative hemostatic complications related to COVID-19-associated coagulopathy (CAC). Traditional methods of thromboprophylaxis and treatment of thromboses after surgery require a tailored approach guided by an understanding of the pathophysiologic underpinnings of the COVID-19 patient. Likewise, a prolonged period of risk for developing hemostatic complications following hospitalization due to COVID-19 has resulted in guidelines from differing societies that recommend varying periods of delay following SARS-CoV-2 infection. In conclusion, we propose the perioperative, personalized assessment of COVID-19 patients' CAC using viscoelastic hemostatic assays and fluorescent microclot analysis.

2.
JAMA ; 327(13): 1247-1259, 2022 04 05.
Article in English | MEDLINE | ID: covidwho-1801957

ABSTRACT

Importance: The efficacy of antiplatelet therapy in critically ill patients with COVID-19 is uncertain. Objective: To determine whether antiplatelet therapy improves outcomes for critically ill adults with COVID-19. Design, Setting, and Participants: In an ongoing adaptive platform trial (REMAP-CAP) testing multiple interventions within multiple therapeutic domains, 1557 critically ill adult patients with COVID-19 were enrolled between October 30, 2020, and June 23, 2021, from 105 sites in 8 countries and followed up for 90 days (final follow-up date: July 26, 2021). Interventions: Patients were randomized to receive either open-label aspirin (n = 565), a P2Y12 inhibitor (n = 455), or no antiplatelet therapy (control; n = 529). Interventions were continued in the hospital for a maximum of 14 days and were in addition to anticoagulation thromboprophylaxis. Main Outcomes and Measures: The primary end point was organ support-free days (days alive and free of intensive care unit-based respiratory or cardiovascular organ support) within 21 days, ranging from -1 for any death in hospital (censored at 90 days) to 22 for survivors with no organ support. There were 13 secondary outcomes, including survival to discharge and major bleeding to 14 days. The primary analysis was a bayesian cumulative logistic model. An odds ratio (OR) greater than 1 represented improved survival, more organ support-free days, or both. Efficacy was defined as greater than 99% posterior probability of an OR greater than 1. Futility was defined as greater than 95% posterior probability of an OR less than 1.2 vs control. Intervention equivalence was defined as greater than 90% probability that the OR (compared with each other) was between 1/1.2 and 1.2 for 2 noncontrol interventions. Results: The aspirin and P2Y12 inhibitor groups met the predefined criteria for equivalence at an adaptive analysis and were statistically pooled for further analysis. Enrollment was discontinued after the prespecified criterion for futility was met for the pooled antiplatelet group compared with control. Among the 1557 critically ill patients randomized, 8 patients withdrew consent and 1549 completed the trial (median age, 57 years; 521 [33.6%] female). The median for organ support-free days was 7 (IQR, -1 to 16) in both the antiplatelet and control groups (median-adjusted OR, 1.02 [95% credible interval {CrI}, 0.86-1.23]; 95.7% posterior probability of futility). The proportions of patients surviving to hospital discharge were 71.5% (723/1011) and 67.9% (354/521) in the antiplatelet and control groups, respectively (median-adjusted OR, 1.27 [95% CrI, 0.99-1.62]; adjusted absolute difference, 5% [95% CrI, -0.2% to 9.5%]; 97% posterior probability of efficacy). Among survivors, the median for organ support-free days was 14 in both groups. Major bleeding occurred in 2.1% and 0.4% of patients in the antiplatelet and control groups (adjusted OR, 2.97 [95% CrI, 1.23-8.28]; adjusted absolute risk increase, 0.8% [95% CrI, 0.1%-2.7%]; 99.4% probability of harm). Conclusions and Relevance: Among critically ill patients with COVID-19, treatment with an antiplatelet agent, compared with no antiplatelet agent, had a low likelihood of providing improvement in the number of organ support-free days within 21 days. Trial Registration: ClinicalTrials.gov Identifier: NCT02735707.


Subject(s)
COVID-19 , Critical Illness , Platelet Aggregation Inhibitors , Venous Thromboembolism , Adult , Anticoagulants/adverse effects , Anticoagulants/therapeutic use , Aspirin/adverse effects , Aspirin/therapeutic use , Bayes Theorem , COVID-19/complications , COVID-19/drug therapy , COVID-19/mortality , COVID-19/therapy , Critical Illness/mortality , Critical Illness/therapy , Female , Hemorrhage/chemically induced , Humans , Male , Middle Aged , Platelet Aggregation Inhibitors/adverse effects , Platelet Aggregation Inhibitors/therapeutic use , Purinergic P2Y Receptor Antagonists/adverse effects , Purinergic P2Y Receptor Antagonists/therapeutic use , Respiration, Artificial , Venous Thromboembolism/drug therapy , Venous Thromboembolism/etiology
4.
J Clin Med ; 11(3)2022 Feb 07.
Article in English | MEDLINE | ID: covidwho-1674681

ABSTRACT

Viscoelastic hemostatic assay (VHAs) are whole blood point-of-care tests that have become an essential method for assaying hemostatic competence in liver transplantation, cardiac surgery, and most recently, trauma surgery involving hemorrhagic shock. It has taken more than three-quarters of a century of research and clinical application for this technology to become mainstream in these three clinical areas. Within the last decade, the cup and pin legacy devices, such as thromboelastography (TEG® 5000) and rotational thromboelastometry (ROTEM® delta), have been supplanted not only by cartridge systems (TEG® 6S and ROTEM® sigma), but also by more portable point-of-care bedside testing iterations of these legacy devices (e.g., Sonoclot®, Quantra®, and ClotPro®). Here, the legacy and new generation VHAs are compared on the basis of their unique hemostatic parameters that define contributions of coagulation factors, fibrinogen/fibrin, platelets, and clot lysis as related to the lifespan of a clot. In conclusion, we offer a brief discussion on the meteoric adoption of VHAs across the medical and surgical specialties to address COVID-19-associated coagulopathy.

5.
JAMA ; 327(3): 227-236, 2022 01 18.
Article in English | MEDLINE | ID: covidwho-1669289

ABSTRACT

Importance: Platelets represent a potential therapeutic target for improved clinical outcomes in patients with COVID-19. Objective: To evaluate the benefits and risks of adding a P2Y12 inhibitor to anticoagulant therapy among non-critically ill patients hospitalized for COVID-19. Design, Setting, and Participants: An open-label, bayesian, adaptive randomized clinical trial including 562 non-critically ill patients hospitalized for COVID-19 was conducted between February 2021 and June 2021 at 60 hospitals in Brazil, Italy, Spain, and the US. The date of final 90-day follow-up was September 15, 2021. Interventions: Patients were randomized to a therapeutic dose of heparin plus a P2Y12 inhibitor (n = 293) or a therapeutic dose of heparin only (usual care) (n = 269) in a 1:1 ratio for 14 days or until hospital discharge, whichever was sooner. Ticagrelor was the preferred P2Y12 inhibitor. Main Outcomes and Measures: The composite primary outcome was organ support-free days evaluated on an ordinal scale that combined in-hospital death (assigned a value of -1) and, for those who survived to hospital discharge, the number of days free of respiratory or cardiovascular organ support up to day 21 of the index hospitalization (range, -1 to 21 days; higher scores indicate less organ support and better outcomes). The primary safety outcome was major bleeding by 28 days as defined by the International Society on Thrombosis and Hemostasis. Results: Enrollment of non-critically ill patients was discontinued when the prespecified criterion for futility was met. All 562 patients who were randomized (mean age, 52.7 [SD, 13.5] years; 41.5% women) completed the trial and 87% received a therapeutic dose of heparin by the end of study day 1. In the P2Y12 inhibitor group, ticagrelor was used in 63% of patients and clopidogrel in 37%. The median number of organ support-free days was 21 days (IQR, 20-21 days) among patients in the P2Y12 inhibitor group and was 21 days (IQR, 21-21 days) in the usual care group (adjusted odds ratio, 0.83 [95% credible interval, 0.55-1.25]; posterior probability of futility [defined as an odds ratio <1.2], 96%). Major bleeding occurred in 6 patients (2.0%) in the P2Y12 inhibitor group and in 2 patients (0.7%) in the usual care group (adjusted odds ratio, 3.31 [95% CI, 0.64-17.2]; P = .15). Conclusions and Relevance: Among non-critically ill patients hospitalized for COVID-19, the use of a P2Y12 inhibitor in addition to a therapeutic dose of heparin, compared with a therapeutic dose of heparin only, did not result in an increased odds of improvement in organ support-free days within 21 days during hospitalization. Trial Registration: ClinicalTrials.gov Identifier: NCT04505774.


Subject(s)
Anticoagulants/administration & dosage , COVID-19/drug therapy , Heparin/administration & dosage , Inpatients , Purinergic P2Y Receptor Antagonists/administration & dosage , Aged , Aged, 80 and over , Anticoagulants/adverse effects , COVID-19/blood , COVID-19/mortality , Clopidogrel/administration & dosage , Clopidogrel/adverse effects , Comorbidity , Extracorporeal Membrane Oxygenation/statistics & numerical data , Female , Hemorrhage/chemically induced , Heparin/adverse effects , Hospital Mortality , Humans , Male , Medical Futility , Middle Aged , Outcome Assessment, Health Care , Oxygen Inhalation Therapy/statistics & numerical data , Platelet Activation/drug effects , Platelet Aggregation Inhibitors/administration & dosage , Platelet Aggregation Inhibitors/adverse effects , Purinergic P2Y Receptor Antagonists/adverse effects , Receptors, Purinergic P2Y12 , Respiration, Artificial/statistics & numerical data , Thrombosis/epidemiology , Ticagrelor/administration & dosage , Ticagrelor/adverse effects , Time Factors , Treatment Outcome
6.
Curr Pathobiol Rep ; : 1-11, 2021 Dec 08.
Article in English | MEDLINE | ID: covidwho-1565480

ABSTRACT

PURPOSE OF REVIEW: COVID-19 has rapidly evolved into a global pandemic infecting over two hundred and forty-four million individuals to date. In addition to the respiratory sequelae and systemic infection that ensues, an alarming number of micro and macrovascular thrombotic complications have been observed. This review examines the current understanding of COVID-19-associated thrombotic complications, potential mechanisms, and pathobiological basis for thromboses development. RECENT FINDINGS: The endothelium plays a major role in the process due to direct and indirect injury. The immune system also contributes to a pro-thrombotic environment with immune cell dysregulation leading to excessive formation of cytokines, also called cytokine storm, and an eventual promotion of a hypercoagulable environment, known as immunothrombosis. Additionally, neutrophils play an important role by forming neutrophil extracellular traps, which are shown to be pro-thrombotic and further enhanced in COVID-19 patients. A disruption of the fibrinolysis system has also been observed. SUMMARY: Multiple pathways likely contribute synergistically to form a pro-thrombotic milieu. A better understanding of these factors and the complex interplay between them will lead to the improvement of diagnostic and therapeutic interventions.

7.
Sci Adv ; 7(37): eabh2434, 2021 Sep 10.
Article in English | MEDLINE | ID: covidwho-1405214

ABSTRACT

Given the evidence for a hyperactive platelet phenotype in COVID-19, we investigated effector cell properties of COVID-19 platelets on endothelial cells (ECs). Integration of EC and platelet RNA sequencing revealed that platelet-released factors in COVID-19 promote an inflammatory hypercoagulable endotheliopathy. We identified S100A8 and S100A9 as transcripts enriched in COVID-19 platelets and were induced by megakaryocyte infection with SARS-CoV-2. Consistent with increased gene expression, the heterodimer protein product of S100A8/A9, myeloid-related protein (MRP) 8/14, was released to a greater extent by platelets from COVID-19 patients relative to controls. We demonstrate that platelet-derived MRP8/14 activates ECs, promotes an inflammatory hypercoagulable phenotype, and is a significant contributor to poor clinical outcomes in COVID-19 patients. Last, we present evidence that targeting platelet P2Y12 represents a promising candidate to reduce proinflammatory platelet-endothelial interactions. Together, these findings demonstrate a previously unappreciated role for platelets and their activation-induced endotheliopathy in COVID-19.

8.
Platelets ; 33(4): 520-530, 2022 May 19.
Article in English | MEDLINE | ID: covidwho-1347990

ABSTRACT

We carried out a literature search in MEDLINE (PubMed) and EMBASE literature databases to provide a concise review of the role of viscoelastic testing in assessing peri-interventional platelet function and coagulation. The search identified 130 articles that were relevant for the review, covering the basic science of VHA and VHA in clinical settings including cardiac surgery, cardiology, neurology, trauma, non-cardiac surgery, obstetrics, liver disease, and COVID-19. Evidence from these articles is used to describe the important role of VHAs and platelet function testing in various peri-interventional setups. VHAs can help us to comprehensively assess the contribution of platelets and coagulation dynamics to clotting at the site-of-care much faster than standard laboratory measures. In addition to standard coagulation tests, VHAs are beneficial in reducing allogeneic transfusion requirements and bleeding, in predicting ischemic events, and improving outcomes in several peri-interventional care settings. Further focused studies are needed to confirm their utility in the peri-interventional case.


Subject(s)
Blood Coagulation Disorders , COVID-19 , Blood Coagulation , Blood Coagulation Tests , Hemostasis , Humans , Thrombelastography
9.
N Engl J Med ; 385(9): 790-802, 2021 Aug 26.
Article in English | MEDLINE | ID: covidwho-1343498

ABSTRACT

BACKGROUND: Thrombosis and inflammation may contribute to the risk of death and complications among patients with coronavirus disease 2019 (Covid-19). We hypothesized that therapeutic-dose anticoagulation may improve outcomes in noncritically ill patients who are hospitalized with Covid-19. METHODS: In this open-label, adaptive, multiplatform, controlled trial, we randomly assigned patients who were hospitalized with Covid-19 and who were not critically ill (which was defined as an absence of critical care-level organ support at enrollment) to receive pragmatically defined regimens of either therapeutic-dose anticoagulation with heparin or usual-care pharmacologic thromboprophylaxis. The primary outcome was organ support-free days, evaluated on an ordinal scale that combined in-hospital death (assigned a value of -1) and the number of days free of cardiovascular or respiratory organ support up to day 21 among patients who survived to hospital discharge. This outcome was evaluated with the use of a Bayesian statistical model for all patients and according to the baseline d-dimer level. RESULTS: The trial was stopped when prespecified criteria for the superiority of therapeutic-dose anticoagulation were met. Among 2219 patients in the final analysis, the probability that therapeutic-dose anticoagulation increased organ support-free days as compared with usual-care thromboprophylaxis was 98.6% (adjusted odds ratio, 1.27; 95% credible interval, 1.03 to 1.58). The adjusted absolute between-group difference in survival until hospital discharge without organ support favoring therapeutic-dose anticoagulation was 4.0 percentage points (95% credible interval, 0.5 to 7.2). The final probability of the superiority of therapeutic-dose anticoagulation over usual-care thromboprophylaxis was 97.3% in the high d-dimer cohort, 92.9% in the low d-dimer cohort, and 97.3% in the unknown d-dimer cohort. Major bleeding occurred in 1.9% of the patients receiving therapeutic-dose anticoagulation and in 0.9% of those receiving thromboprophylaxis. CONCLUSIONS: In noncritically ill patients with Covid-19, an initial strategy of therapeutic-dose anticoagulation with heparin increased the probability of survival to hospital discharge with reduced use of cardiovascular or respiratory organ support as compared with usual-care thromboprophylaxis. (ATTACC, ACTIV-4a, and REMAP-CAP ClinicalTrials.gov numbers, NCT04372589, NCT04505774, NCT04359277, and NCT02735707.).


Subject(s)
Anticoagulants/administration & dosage , COVID-19/drug therapy , Heparin/administration & dosage , Thrombosis/prevention & control , Adult , Aged , Anticoagulants/adverse effects , Anticoagulants/therapeutic use , COVID-19/mortality , Female , Hemorrhage/chemically induced , Heparin/adverse effects , Heparin/therapeutic use , Heparin, Low-Molecular-Weight/therapeutic use , Hospital Mortality , Humans , Male , Middle Aged , Survival Analysis
10.
J Clin Med ; 10(14)2021 Jul 14.
Article in English | MEDLINE | ID: covidwho-1314672

ABSTRACT

BACKGROUND: The treatment of COVID-19 patients with heparin is not always effective in preventing thrombotic complications, but can also be associated with bleeding complications, suggesting a balanced approach to anticoagulation is needed. A prior pilot study supported that thromboelastography and conventional coagulation tests could predict hemorrhage in COVID-19 in patients treated with unfractionated heparin or enoxaparin, but did not evaluate the risk of thrombosis. METHODS: This single-center, retrospective study included 79 severely ill COVID-19 patients anticoagulated with intermediate or therapeutic dose unfractionated heparin. Two stepwise logistic regression models were performed with bleeding or thrombosis as the dependent variable, and thromboelastography parameters and conventional coagulation tests as the independent variables. RESULTS: Among all 79 patients, 12 (15.2%) had bleeding events, and 20 (25.3%) had thrombosis. Multivariate logistic regression analysis identified a prediction model for bleeding (adjusted R2 = 0.787, p < 0.001) comprised of increased reaction time (p = 0.016), decreased fibrinogen (p = 0.006), decreased D-dimer (p = 0.063), and increased activated partial thromboplastin time (p = 0.084). Multivariate analysis of thrombosis identified a weak prediction model (adjusted R2 = 0.348, p < 0.001) comprised of increased D-dimer (p < 0.001), decreased reaction time (p = 0.002), increased maximum amplitude (p < 0.001), and decreased alpha angle (p = 0.014). Adjunctive thromboelastography decreased the use of packed red cells (p = 0.031) and fresh frozen plasma (p < 0.001). CONCLUSIONS: Significantly, this study demonstrates the need for a precision-based titration strategy of anticoagulation for hospitalized COVID-19 patients. Since severely ill COVID-19 patients may switch between thrombotic or hemorrhagic phenotypes or express both simultaneously, institutions may reduce these complications by developing their own titration strategy using daily conventional coagulation tests with adjunctive thromboelastography.

SELECTION OF CITATIONS
SEARCH DETAIL