Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Add filters

Year range
Frontiers in Water ; 4, 2022.
Article in English | Web of Science | ID: covidwho-2032823


Drinking water stagnation can lead to degradation of chlorine residual, bacterial growth (including of opportunistic pathogens and nitrifiers), and metals release from plumbing materials;however, few studies have characterized building water quality and bacterial communities during the extended stagnation periods that occurred during COVID-19 pandemic-related building closures. Additionally, despite a lack of evidence-based guidance, flushing fixtures has been recommended to restore building water quality. We aimed to evaluate the impacts of reduced building occupancy (>2 months) and weekly restorative flushing on drinking water quality, bacterial communities, and the occurrence of undesirable microorganisms in three university buildings. Reduced occupancy led to diminished chloramine and elevated intact cell counts, but values remained stable after additional weeks of limited water use. Flushing temporarily improved water quality, with chlorine and cell counts remaining stable for at least 1 day but returning to levels measured prior to flushing within 1 week. Alpha diversity was lower under more stagnant conditions, and fixture identity, not flushing, was the most influential factor on bacterial community composition, suggesting a strong influence from local biofilm. Although Mycobacterium, Legionella, Pseudomonas, Nitrosomonas, and Nitrospira were detected in samples via amplicon sequencing, concentrations measured via qPCR of M. avium complex, L. pneumophila, P. aeruginosa, and ammonia-oxidizing bacteria were very low or were undetected, supporting that stagnation alone did not lead to high occurrence of undesirable microorganisms. Findings from this study contribute to our understanding of the effects of stagnation on building water microbiomes and the efficacy of flushing to improve water quality. Under the conditions of this case study, repeated flushing on a weekly timescale during low occupancy periods was not sufficient to maintain chlorine residual and prevent bacterial growth in fixtures. Building managers need to weigh the temporary water quality benefits of flushing against the labor and water resources required considering local context.

PubMed; 2020.
Preprint in English | PubMed | ID: ppcovidwho-297073


Wastewater-based epidemiology is an emerging tool to monitor COVID-19 infection levels by measuring the concentration of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA in wastewater. There remains a need to improve wastewater RNA extraction methods' sensitivity, speed, and reduce reliance on often expensive commercial reagents to make wastewater-based epidemiology more accessible. We present a kit-free wastewater RNA extraction method, titled "Sewage, Salt, Silica and SARS-CoV-2" (4S), that employs the abundant and affordable reagents sodium chloride (NaCl), ethanol and silica RNA capture matrices to recover 6-fold more SARS-CoV-2 RNA from wastewater than an existing ultrafiltration-based method. The 4S method concurrently recovered pepper mild mottle virus (PMMoV) and human 18S ribosomal subunit rRNA, both suitable as fecal concentration controls. The SARS-CoV-2 RNA concentrations measured in three sewersheds corresponded to the relative prevalence of COVID-19 infection determined via clinical testing. Lastly, controlled experiments indicate that the 4S method prevented RNA degradation during storage of wastewater samples, was compatible with heat pasteurization, and could be performed in approximately 3 hours. Overall, the 4S method is promising for effective, economical, and accessible wastewater-based epidemiology for SARS-CoV-2, providing another tool to fight the global pandemic. SYNOPSIS: The 4S method for measuring SARS-CoV-2 in wastewater is promising for effective, economical, and accessible wastewater-based epidemiology. Abstract art: