Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
PubMed; 2021.
Preprint in English | PubMed | ID: ppcovidwho-333739


BACKGROUND: The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has infected over 110 million individuals and led to 2.5 million deaths worldwide. As more individuals are vaccinated, the clinical performance and utility of SARS-CoV-2 serology platforms needs to be evaluated. METHODS: The ability of four commercial SARS-CoV-2 serology platforms to detect previous infection or vaccination were evaluated using a cohort of 53 SARS-CoV-2 PCR-positive patients, 89 SARS-CoV-2-vaccinated healthcare workers (Pfizer or Moderna), and 127 SARS-CoV-2 negative patients. Serology results were compared to a cell based SARS-CoV-2 pseudovirus (PSV) neutralizing antibodies assay. RESULTS: The Roche S-(spike) antibody and Diazyme neutralizing antibodies (NAbs) assays detected adaptive immune response in 100.0% and 90.1% of vaccinated individuals who received two-doses of vaccine (initial and booster), respectively. The Roche N-(nucleocapsid) antibody assay and Diazyme IgG assay did not detect adaptive immune response in vaccinated individuals. The Diazyme Nabs assay correlated with the PSV SARS-CoV-2 ID50 neutralization titers (R 2 = 0.70), while correlation of the Roche S-antibody assay was weaker (R 2 = 0.39). Median PSV SARS-CoV-2 ID50 titers more than doubled in vaccinated individuals who received two-doses of the Moderna vaccine (ID50: 597) compared to individuals that received a single dose (ID50: 284). CONCLUSIONS: The Roche S-antibody and Diazyme NAbs assays robustly detected adaptive immune responses in SARS-CoV-2 vaccinated individuals and SARS-CoV-2 infected individuals. The Diazyme NAbs assay strongly correlates with the PSV SARS-CoV-2 NAbs in vaccinated individuals. Understanding the reactivity of commercially available serology platforms is important when distinguishing vaccination response versus natural infection. SUMMARY: The Roche S (spike protein)-antibody and Diazyme neutralizing-antibodies (NAbs) assays were evaluated for their clinical utility in the detection of SARS-CoV-2 related adaptive immune responses by testing SARS-CoV-2 PCR-confirmed patients, SARS-CoV-2-vaccinated individuals, and SARS-CoV-2-negative individuals. Commercial serology results were compared to results generated using a cell-based SARS-CoV-2 pseudovirus (PSV) NAbs assay and previously validated SARS-CoV-2 commercial serology assays (Roche N (nucleocapsid protein) antibody and Diazyme IgG). We demonstrate that the Roche S-antibody and Diazyme NAbs assays detected adaptive immune response in SARS-CoV-2 vaccinated individuals and the presence of SARS-CoV-2 PSV NAbs. The Roche S-antibody assay had an observed positive percent agreement (PPA) of 100% for individuals who received two doses of the Pfizer or Moderna vaccine. By contrast, the Roche N assay and Diazyme IgG assay did not detect vaccine adaptive immune responses. Our findings also indicate that the Diazyme NAbs assay correlates strongly with the levels of SARS-CoV-2 ID50 neutralization titers using the PSV Nab assay in vaccinated individuals.

Non-conventional in English | National Technical Information Service, Grey literature | ID: grc-753724


The recurrent zoonotic spillover of coronaviruses (CoVs) into the human population underscores the need for broadly active countermeasures. We employed a directed evolution approach to engineer three SARS-CoV-2 antibodies for enhanced neutralization breadth and potency. One of the affinity-matured variants, ADG-2, displays strong binding activity to a large panel of sarbecovirus receptor binding domains (RBDs) and neutralizes representative epidemic sarbecoviruses with high potency. Structural and biochemical studies demonstrate that ADG-2 employs a distinct angle of approach to recognize a highly conserved epitope overlapping the receptor binding site. In immunocompetent mouse models of SARS and COVID-19, prophylactic administration of ADG-2 provided complete protection against respiratory burden, viral replication in the lungs, and lung pathology. Altogether, ADG-2 represents a promising broad-spectrum therapeutic candidate against clade 1 sarbecoviruses.

Preprint in English | MEDLINE | ID: ppcovidwho-326636


Broadly neutralizing antibodies (bnAbs) to coronaviruses (CoVs) are valuable in their own right as prophylactic and therapeutic reagents to treat diverse CoVs and, importantly, as templates for rational pan-CoV vaccine design. We recently described a bnAb, CC40.8, from a coronavirus disease 2019 (COVID-19)-convalescent donor that exhibits broad reactivity with human beta-coronaviruses (beta-CoVs). Here, we showed that CC40.8 targets the conserved S2 stem-helix region of the coronavirus spike fusion machinery. We determined a crystal structure of CC40.8 Fab with a SARS-CoV-2 S2 stem-peptide at 1.6 A resolution and found that the peptide adopted a mainly helical structure. Conserved residues in beta-CoVs interacted with CC40.8 antibody, thereby providing a molecular basis for its broad reactivity. CC40.8 exhibited in vivo protective efficacy against SARS-CoV-2 challenge in two animal models. In both models, CC40.8-treated animals exhibited less weight loss and reduced lung viral titers compared to controls. Furthermore, we noted CC40.8-like bnAbs are relatively rare in human COVID-19 infection and therefore their elicitation may require rational structure-based vaccine design strategies. Overall, our study describes a target on beta-CoV spike proteins for protective antibodies that may facilitate the development of pan-beta-CoV vaccines. SUMMARY: A human mAb isolated from a COVID-19 donor defines a protective cross-neutralizing epitope for pan-beta-CoV vaccine design strategies.