Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-337649

ABSTRACT

Over the course of the pandemic variants have arisen at a steady rate. The most recent variants to emerge, BA.4 and BA.5, form part of the Omicron lineage and were first found in Southern Africa where they are driving the current wave of infection. In this report, we perform an in-depth characterisation of the antigenicity of the BA.4/BA.5 Spike protein by comparing sera collected post-vaccination, post-BA.1 or BA.2 infection, or post breakthrough infection of vaccinated individuals with the Omicron variant. In addition, we assess sensitivity to neutralisation by commonly used therapeutic monoclonal antibodies. We find sera collected post-vaccination have a similar ability to neutralise BA.1, BA.2 and BA.4/BA.5. In contrast, in the absence of vaccination, prior infection with BA.2 or, in particular, BA.1 results in an antibody response that neutralises BA.4/BA.5 poorly. Breakthrough infection with Omicron in vaccinees leads to a broad neutralising response against the new variants. The sensitivity of BA.4/BA.5 to neutralisation by therapeutic monoclonal antibodies was similar to that of BA.2. These data suggest BA.4/BA.5 are antigenically distinct from BA.1 and, to a lesser extent, BA.2. The enhanced breadth of neutralisation observed following breakthrough infection with Omicron suggests that vaccination with heterologous or multivalent antigens may represent viable strategies for the development of cross-neutralising antibody responses.

2.
Commun Biol ; 5(1): 409, 2022 05 03.
Article in English | MEDLINE | ID: covidwho-1821622

ABSTRACT

RaTG13 is a close relative of SARS-CoV-2, the virus responsible for the COVID-19 pandemic, sharing 96% sequence similarity at the genome-wide level. The spike receptor binding domain (RBD) of RaTG13 contains a number of amino acid substitutions when compared to SARS-CoV-2, likely impacting affinity for the ACE2 receptor. Antigenic differences between the viruses are less well understood, especially whether RaTG13 spike can be efficiently neutralised by antibodies generated from infection with, or vaccination against, SARS-CoV-2. Using RaTG13 and SARS-CoV-2 pseudotypes we compared neutralisation using convalescent sera from previously infected patients or vaccinated healthcare workers. Surprisingly, our results revealed that RaTG13 was more efficiently neutralised than SARS-CoV-2. In addition, neutralisation assays using spike mutants harbouring single and combinatorial amino acid substitutions within the RBD demonstrated that both spike proteins can tolerate multiple changes without dramatically reducing neutralisation. Moreover, introducing the 484 K mutation into RaTG13 resulted in increased neutralisation, in contrast to the same mutation in SARS-CoV-2 (E484K). This is despite E484K having a well-documented role in immune evasion in variants of concern (VOC) such as B.1.351 (Beta). These results indicate that the future spill-over of RaTG13 and/or related sarbecoviruses could be mitigated using current SARS-CoV-2-based vaccination strategies.


Subject(s)
COVID-19 , Chiroptera , Animals , COVID-19/therapy , Chiroptera/metabolism , Humans , Immunization, Passive , Membrane Glycoproteins/metabolism , Pandemics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Viral Envelope Proteins/genetics
3.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-333065

ABSTRACT

The severity of disease following infection with SARS-CoV-2 is determined by viral replication kinetics and host immunity, with early T cell responses and/or suppression of viraemia driving a favourable outcome. Recent studies have uncovered a role for cholesterol metabolism in the SARS-CoV-2 life cycle and in T cell function. Here we show that blockade of the enzyme Acyl-CoA:cholesterol acyltransferase (ACAT) with Avasimibe inhibits SARS-CoV-2 entry and fusion independent of transmembrane protease serine 2 expression in multiple cell types. We also demonstrate a role for ACAT in regulating SARS-CoV-2 RNA replication in primary bronchial epithelial cells. Furthermore, Avasimibe boosts the expansion of functional SARS-CoV-2-specific T cells from the blood of patients sampled in the acute phase of infection. Thus, re-purposing of available ACAT inhibitors provides a compelling therapeutic strategy for the treatment of COVID-19 to achieve both antiviral and immunomodulatory effects.

4.
Frontiers in immunology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-1782008

ABSTRACT

In the light of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, we have developed a porcine respiratory coronavirus (PRCV) model for in depth mechanistic evaluation of the pathogenesis, virology and immune responses of this important family of viruses. Pigs are a large animal with similar physiology and immunology to humans and are a natural host for PRCV. Four PRCV strains were investigated and shown to induce different degrees of lung pathology. Importantly, although all four strains replicated equally well in porcine cell lines in vitro and in the upper respiratory tract in vivo, PRCV strains causing more severe lung pathology were also able to replicate in ex vivo tracheal organ cultures as well as in vivo in the trachea and lung. The time course of infection of PRCV 135, which caused the most severe pulmonary pathology, was investigated. Virus was shed from the upper respiratory tract until day 10 post infection, with infection of the respiratory mucosa, as well as olfactory and sustentacular cells, providing an excellent model to study upper respiratory tract disease in addition to the commonly known lower respiratory tract disease from PRCV. Infected animals made antibody and T cell responses that cross reacted with the four PRCV strains and Transmissible Gastroenteritis Virus. The antibody response was reproduced in vitro in organ cultures. Comparison of mechanisms of infection and immune control in pigs infected with PRCVs of differing pathogenicity with human data from SARS-CoV-2 infection and from our in vitro organ cultures, will enable key events in coronavirus infection and disease pathogenesis to be identified.

5.
J Gen Virol ; 103(4)2022 04.
Article in English | MEDLINE | ID: covidwho-1774462

ABSTRACT

Following the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in PR China in late 2019 a number of variants have emerged, with two of these - alpha and delta - subsequently growing to global prevalence. One characteristic of these variants are changes within the spike protein, in particular the receptor-binding domain (RBD). From a public health perspective, these changes have important implications for increased transmissibility and immune escape; however, their presence could also modify the intrinsic host range of the virus. Using viral pseudotyping, we examined whether the variants of concern (VOCs) alpha, beta, gamma and delta have differing host angiotensin-converting enzyme 2 (ACE2) receptor usage patterns, focusing on a range of relevant mammalian ACE2 proteins. All four VOCs were able to overcome a previous restriction for mouse ACE2, with demonstrable differences also seen for individual VOCs with rat, ferret or civet ACE2 receptors, changes that we subsequently attributed to N501Y and E484K substitutions within the spike RBD.


Subject(s)
COVID-19 , SARS-CoV-2 , Angiotensin-Converting Enzyme 2/genetics , Animals , Ferrets , Host Specificity , Humans , Mice , Peptidyl-Dipeptidase A/chemistry , Rats , SARS-CoV-2/genetics
6.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-330178

ABSTRACT

The SARS-CoV-2 non-structural protein 14 (NSP14) is a dual function enzyme containing an N-terminal exonuclease domain (ExoN) and C-terminal Guanine-N7-methyltransferase (N7-MTase) domain. Both enzymatic activities appear to be essential for the viral life cycle and thus may be targeted for anti-viral therapeutics. NSP14 forms a stable complex with the SARS-CoV-2 zinc binding protein NSP10, and this interaction greatly enhances the nuclease but not the methyltransferase activity. In this study, we have determined the crystal structure of SARS-CoV-2 NSP14 in the absence of NSP10 to 1.7 Å resolution. Comparisons of this structure with the structure of NSP14/NSP10 complexes solved to date reveal significant conformational changes that occur within the NSP14 ExoN domain upon binding of NSP10, including significant movements and helix to coil transitions that facilitate the formation of the ExoN active site and provide an explanation of the stimulation of nuclease activity by NSP10. Conformational changes are also seen in the MTase active site within a SAM/SAH interacting loop that plays a key role in viral mRNA capping. We have also determined the structure of NSP14 in complex with cap analogue 7Me GpppG, offering new insights into MTase enzymatic activity. We have used our high resolution crystals to perform X-ray fragment screening of NSP14, revealing 72 hits bound to potential sites of inhibition of the ExoN and MTase domains. These structures serve as excellent starting point tools for structure guided development and optimization of NSP14 inhibitors that may be used to treat COVID-19 and potentially other future viral threats.

7.
EBioMedicine ; 77: 103902, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1700817

ABSTRACT

BACKGROUND: There is an ongoing global effort to design, manufacture, and clinically assess vaccines against SARS-CoV-2. Over the course of the ongoing pandemic a number of new SARS-CoV-2 virus isolates or variants of concern (VoC) have been identified containing mutations in key proteins. METHODS: In this study we describe the generation and preclinical assessment of a ChAdOx1-vectored vaccine (AZD2816) which expresses the spike protein of the Beta VoC (B.1.351). FINDINGS: We demonstrate that AZD2816 is immunogenic after a single dose. When AZD2816 is used as a booster dose in animals primed with a vaccine encoding the original spike protein (ChAdOx1 nCoV-19/ [AZD1222]), an increase in binding and neutralising antibodies against Beta (B.1.351), Gamma (P.1) and Delta (B.1.617.2) is observed following each additional dose. In addition, a strong and polyfunctional T cell response was measured all booster regimens. INTERPRETATION: Real world data is demonstrating that one or more doses of licensed SARS-CoV-2 vaccines confer reduced protection against hospitalisation and deaths caused by divergent VoC, including Omicron. Our data support the ongoing clinical development and testing of booster vaccines to increase immunity against highly mutated VoC. FUNDING: This research was funded by AstraZeneca with supporting funds from MRC and BBSRC.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/prevention & control , COVID-19 Vaccines , Humans , SARS-CoV-2/genetics
8.
EuropePMC;
Preprint in English | EuropePMC | ID: ppcovidwho-328855

ABSTRACT

ChAdOx1 nCoV-19 (AZD1222) is a replication-deficient simian adenovirus–vectored vaccine encoding the spike (S) protein of SARS-CoV-2, based on the first published full-length sequence (Wuhan-1). AZD1222 was shown to have 74% vaccine efficacy (VE) against symptomatic disease in clinical trials and over 2.5 billion doses of vaccine have been released for worldwide use. However, SARS-CoV-2 continues to circulate and consequently, variants of concern (VoCs) have been detected, with substitutions in the S protein that are associated with a reduction in virus neutralizing antibody titer. Updating vaccines to include S proteins of VoCs may be beneficial over boosting with vaccines encoding the ancestral S protein, even though current real-world data is suggesting good efficacy against hospitalization and death following boosting with vaccines encoding the ancestral S protein. Using the Syrian hamster model, we evaluated the effect of a single dose of AZD2816, encoding the S protein of the Beta VoC, and efficacy of AZD1222/AZD2816 as a heterologous primary series against challenge with the Beta or Delta variant. We then investigated the efficacy of a single dose of AZD2816 or AZD1222 against the Omicron VoC. As seen previously, minimal to no viral sgRNA could be detected in lungs of vaccinated animals obtained at 5 days post inoculation, in contrast to lungs of control animals. Thus, these vaccination regimens are protective against the Beta, Delta, and Omicron VoCs in the hamster model.

9.
2021.
Preprint in English | Other preprints | ID: ppcovidwho-296056

ABSTRACT

There is an ongoing global effort to design, manufacture, and clinically assess vaccines against SARS-CoV-2. Over the course of the ongoing pandemic a number of new SARS-CoV-2 virus isolates or variants of concern (VoC) have been identified containing mutations in key proteins. In this study we describe the generation and preclinical assessment of a ChAdOx1-vectored vaccine (AZD2816) which expresses the spike protein of the Beta VoC (B.1.351). We demonstrate that AZD2816 is immunogenic after a single dose. When AZD2816 is used as a booster dose in animals primed with a vaccine encoding the original spike protein (ChAdOx1 nCoV-19/ [AZD1222]), high titre binding and neutralising antibodies against Beta (B.1.351), Gamma (P.1) and Delta (B.1.617.2) are induced. In addition, a strong and polyfunctional T cell response was measured in these booster regimens. These data support the ongoing clinical development and testing of this new variant vaccine.

10.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-293136

ABSTRACT

Following the emergence of SARS-CoV-2 in China in late 2019 a number of variants have emerged, with two of these, Alpha and Delta, subsequently growing to global prevalence. One characteristic of these variants are changes within the Spike protein, in particular the receptor binding domain (RBD). From a public health perspective these changes have important implications for increased transmissibility and immune escape;however, their presence could also modify the intrinsic host-range of the virus. Using viral pseudotyping we examined whether the variants of concern (VOCs) Alpha, Beta, Gamma and Delta have differing host ACE2 receptor usage patterns, focusing on a range of relevant mammalian ACE2 proteins. All four VOCs were able to overcome a previous restriction for mouse ACE2, with demonstrable differences also seen for individual VOCs with rat, ferret or civet ACE2 receptors, changes which we subsequently attribute to N501Y and E484K substitutions within the Spike RBD.

11.
ERJ Open Res ; 7(4)2021 Oct.
Article in English | MEDLINE | ID: covidwho-1526594

ABSTRACT

The average rate of new #CTEPH referrals has dropped by 32% in the UK during the pandemic, despite the high incidence of #COVID19 related pulmonary emboli. There have been no recorded new cases of CTEPH caused by COVID-19. A prospective study is underway. https://bit.ly/37msP2G.

12.
Nat Commun ; 12(1): 4848, 2021 08 11.
Article in English | MEDLINE | ID: covidwho-1354102

ABSTRACT

There is currently a lack of effective drugs to treat people infected with SARS-CoV-2, the cause of the global COVID-19 pandemic. The SARS-CoV-2 Non-structural protein 13 (NSP13) has been identified as a target for anti-virals due to its high sequence conservation and essential role in viral replication. Structural analysis reveals two "druggable" pockets on NSP13 that are among the most conserved sites in the entire SARS-CoV-2 proteome. Here we present crystal structures of SARS-CoV-2 NSP13 solved in the APO form and in the presence of both phosphate and a non-hydrolysable ATP analog. Comparisons of these structures reveal details of conformational changes that provide insights into the helicase mechanism and possible modes of inhibition. To identify starting points for drug development we have performed a crystallographic fragment screen against NSP13. The screen reveals 65 fragment hits across 52 datasets opening the way to structure guided development of novel antiviral agents.


Subject(s)
Methyltransferases/chemistry , RNA Helicases/chemistry , SARS-CoV-2/chemistry , Viral Nonstructural Proteins/chemistry , Adenosine Triphosphate/chemistry , Adenosine Triphosphate/metabolism , Amino Acid Sequence , Apoenzymes/chemistry , Apoenzymes/metabolism , Binding Sites , Crystallography, X-Ray , Drug Design , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/metabolism , Methyltransferases/antagonists & inhibitors , Methyltransferases/metabolism , Models, Molecular , Phosphates/chemistry , Phosphates/metabolism , Protein Conformation , RNA Helicases/antagonists & inhibitors , RNA Helicases/metabolism , RNA, Viral/chemistry , RNA, Viral/metabolism , SARS-CoV-2/enzymology , Structure-Activity Relationship , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/metabolism
13.
BMJ Case Rep ; 14(3)2021 Mar 08.
Article in English | MEDLINE | ID: covidwho-1123593

ABSTRACT

A 35-year-old nurse, who was 27 weeks pregnant at the time, was admitted to hospital with a short history of cough, fever and worsening shortness of breath. Oral and nasopharyngeal swabs were positive for SARS-CoV-2 on real-time viral PCR. During her admission, her breathing further deteriorated and she developed type 1 respiratory failure. A decision was made to trial treatment with continuous positive airway pressure (CPAP) as a means of avoiding intubation. The patient tolerated this well and made rapid improvements on this therapy. She was quickly weaned off and fully recovered before being discharged home. This case highlights the potential for CPAP to be used as a means of avoiding mechanical ventilation and iatrogenic preterm birth in COVID-19 pneumonia in pregnancy. Furthermore, it highlights the need for robust evidence to support this treatment.


Subject(s)
COVID-19/therapy , Continuous Positive Airway Pressure , Pregnancy Complications, Infectious/therapy , Respiratory Insufficiency/therapy , Respiratory Insufficiency/virology , Adult , COVID-19/complications , COVID-19/diagnostic imaging , Female , Humans , Pregnancy , Pregnancy Complications, Infectious/diagnostic imaging , Radiography , Respiratory Insufficiency/diagnostic imaging , SARS-CoV-2 , Treatment Outcome
14.
Nat Commun ; 12(1): 542, 2021 01 22.
Article in English | MEDLINE | ID: covidwho-1044339

ABSTRACT

There is need for effective and affordable vaccines against SARS-CoV-2 to tackle the ongoing pandemic. In this study, we describe a protein nanoparticle vaccine against SARS-CoV-2. The vaccine is based on the display of coronavirus spike glycoprotein receptor-binding domain (RBD) on a synthetic virus-like particle (VLP) platform, SpyCatcher003-mi3, using SpyTag/SpyCatcher technology. Low doses of RBD-SpyVLP in a prime-boost regimen induce a strong neutralising antibody response in mice and pigs that is superior to convalescent human sera. We evaluate antibody quality using ACE2 blocking and neutralisation of cell infection by pseudovirus or wild-type SARS-CoV-2. Using competition assays with a monoclonal antibody panel, we show that RBD-SpyVLP induces a polyclonal antibody response that recognises key epitopes on the RBD, reducing the likelihood of selecting neutralisation-escape mutants. Moreover, RBD-SpyVLP is thermostable and can be lyophilised without losing immunogenicity, to facilitate global distribution and reduce cold-chain dependence. The data suggests that RBD-SpyVLP provides strong potential to address clinical and logistic challenges of the COVID-19 pandemic.


Subject(s)
Antibodies, Viral/immunology , COVID-19 Vaccines/immunology , COVID-19/prevention & control , Peptides/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Angiotensin-Converting Enzyme 2/immunology , Animals , Antibodies, Blocking/immunology , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , COVID-19/immunology , Cell Line , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Protein Interaction Domains and Motifs , Protein Multimerization , Swine
15.
NPJ Vaccines ; 5(1): 69, 2020.
Article in English | MEDLINE | ID: covidwho-689622

ABSTRACT

Clinical development of the COVID-19 vaccine candidate ChAdOx1 nCoV-19, a replication-deficient simian adenoviral vector expressing the full-length SARS-CoV-2 spike (S) protein was initiated in April 2020 following non-human primate studies using a single immunisation. Here, we compared the immunogenicity of one or two doses of ChAdOx1 nCoV-19 in both mice and pigs. Whilst a single dose induced antigen-specific antibody and T cells responses, a booster immunisation enhanced antibody responses, particularly in pigs, with a significant increase in SARS-CoV-2 neutralising titres.

SELECTION OF CITATIONS
SEARCH DETAIL